1. Développement d’approches statistiques multivariées pour les modèles de copules, applications en hydrologie.
- Author
-
Ben Nasr, Iméne and Ben Nasr, Iméne
- Abstract
Les études portant sur les évènements hydrologiques extrêmes sont d’une grande importance vu leurs nombreux impacts socio-économiques. Ces études reposent dans une large mesure sur la capacité à estimer adéquatement les risques associés à ces évènements. Dans ce cadre, l’analyse fréquentielle (AF) est une des approches les plus utilisées pour la modélisation et l’estimation des risques associés aux évènements extrêmes. Généralement, ces évènements sont caractérisés par plusieurs variables dépendantes, comme le volume, la pointe et la durée pour les crues. Par conséquent, l'analyse de chacune de ces variables séparément ne peut pas fournir une évaluation complète des risques et peut engendrer des pertes de vies humaines ou de biens associés à une sous estimation, ou une augmentation des coûts des ouvrages hydrauliques associés à une surestimation. L’AF multivariée (AFM) permet de pallier ce problème en considérant simultanément ces variables. L’AF classique est basée sur trois hypothèses à savoir l’homogénéité, la stationnarité et l’indépendance. Par ailleurs, différentes conditions non standards telles que la complexité topographique, les perturbations par les aménagements urbains et les changements climatiques peuvent influencer la réponse hydrologique. De telles conditions rendent la prédétermination des crues, par les méthodes classiques d’AFM, un exercice non efficace et mal adapté à de tels contextes. L’objectif de cette thèse consiste à proposer de nouvelles méthodes plus prometteuses pour l'analyse et la modélisation des variables hydrologiques à la fois dans un cadre multivarié et en l’absence de l’hypothèse d’homogénéité. Ces méthodes visent à contourner les limites de celles utilisées dans la littérature. Ces nouvelles méthodes, basées sur les copules, permettent une meilleure estimation des risques des extrêmes hydrologiques en tenant compte des interactions et es dépendances entre les différentes variables. Par conséquent, les gestionnaires des ressou
- Published
- 2021