1. Cryogenic Characterization of 22nm FDSOI CMOS Technology for Quantum Computing ICs
- Author
-
H. Jia, M. S. Dadash, Peter M. Asbeck, Alexandru Muller, M. Pasteanu, M. J. Gong, Raafat R. Mansour, Sorin P. Voinigescu, Sergiu Iordanescu, L. E. Gutierrez, S. Bonen, Ioana Giangu, David Harame, Utku Alakusu, W. T. Chen, Y. Duan, David R. Daughton, N. Messaoudi, Gina C. Adam, and L. Lucci
- Subjects
010302 applied physics ,Physics ,Transimpedance amplifier ,Subthreshold conduction ,business.industry ,Integrated circuit ,01 natural sciences ,7. Clean energy ,Electronic, Optical and Magnetic Materials ,law.invention ,Computer Science::Emerging Technologies ,CMOS ,Quantum dot ,law ,Logic gate ,Qubit ,0103 physical sciences ,Optoelectronics ,Electrical and Electronic Engineering ,business ,Quantum computer - Abstract
An approach is proposed to realize large-scale, “high-temperature” and high-fidelity quantum computing integrated circuits based on single- and multiple-coupled quantum-dot electron- and hole-spin qubits monolithically integrated with the mm-wave spin manipulation and readout circuitry in a commercial CMOS technology. Measurements of minimum-size 6 nm $\times20$ nm $\times80$ nm Si-channel n-MOSFETs (electron-spin qubit), SiGe-channel p-MOSFETs (hole-spin qubit), and double quantum-dot complementary qubits reveal strong quantum effects in the subthreshold region at 2 K, characteristic of resonant tunneling in a quantum dot. S-parameter measurements of a transimpedance amplifier (TIA) for spin readout show an improved performance from 300 K to 2 K. Finally, the qubit-with-TIA circuit has 50- $\Omega $ output impedance and 78-dB $\Omega $ transimpedance gain with a unity-gain bandwidth of 70 GHz and consumes 3.1 mW.
- Published
- 2019
- Full Text
- View/download PDF