Back to Search Start Over

Cryogenic Characterization of 22nm FDSOI CMOS Technology for Quantum Computing ICs

Authors :
H. Jia
M. S. Dadash
Peter M. Asbeck
Alexandru Muller
M. Pasteanu
M. J. Gong
Raafat R. Mansour
Sorin P. Voinigescu
Sergiu Iordanescu
L. E. Gutierrez
S. Bonen
Ioana Giangu
David Harame
Utku Alakusu
W. T. Chen
Y. Duan
David R. Daughton
N. Messaoudi
Gina C. Adam
L. Lucci
Source :
IEEE Electron Device Letters
Publication Year :
2019

Abstract

An approach is proposed to realize large-scale, “high-temperature” and high-fidelity quantum computing integrated circuits based on single- and multiple-coupled quantum-dot electron- and hole-spin qubits monolithically integrated with the mm-wave spin manipulation and readout circuitry in a commercial CMOS technology. Measurements of minimum-size 6 nm $\times20$ nm $\times80$ nm Si-channel n-MOSFETs (electron-spin qubit), SiGe-channel p-MOSFETs (hole-spin qubit), and double quantum-dot complementary qubits reveal strong quantum effects in the subthreshold region at 2 K, characteristic of resonant tunneling in a quantum dot. S-parameter measurements of a transimpedance amplifier (TIA) for spin readout show an improved performance from 300 K to 2 K. Finally, the qubit-with-TIA circuit has 50- $\Omega $ output impedance and 78-dB $\Omega $ transimpedance gain with a unity-gain bandwidth of 70 GHz and consumes 3.1 mW.

Details

ISSN :
07413106
Database :
OpenAIRE
Journal :
IEEE Electron Device Letters
Accession number :
edsair.doi.dedup.....cf7c5f7ab1fd8c10442403b01d998044
Full Text :
https://doi.org/10.1109/led.2018.2880303