132 results on '"V. G. Egorov"'
Search Results
2. Construction of the Gaseous and Solid-State Targets for the Muon Capture Measuring System in 130Xe, 82Kr, and 24Mg
- Author
-
V. G. Egorov, K. N. Gusev, M. Shirchenko, I. Zhitnikov, V. B. Brudanin, D. R. Zinatulina, V. Belov, S. Kazartsev, N. Rumyantseva, Yu. Shitov, E. Shevchik, and M. Fomina
- Subjects
Physics ,Nuclear and High Energy Physics ,Radiation ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Detector ,Solid-state ,chemistry.chemical_element ,Germanium ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Semiconductor detector ,Muon capture ,Nuclear physics ,chemistry ,0103 physical sciences ,High Energy Physics::Experiment ,Radiology, Nuclear Medicine and imaging ,010306 general physics ,Selection system - Abstract
The description of the muon capture system units with different targets (gas and solid-state) is presented. Using the muon-event selection system and high-purity germanium (HPGe) detectors, precise measurements of the time-energy distributions following ordinary muon capture in the isotopically-enriched 130Xe, 82Kr, and 24Mg nuclei were performed. The optimal parameters of the muon capture measuring system to ensure maximum muon stops in the targets under study and to collect effective statistics during measurements are reported. The system makes it possible to separate muonic X-ray events from gamma radiation with high accuracy, which is critical in such studies, and it is also suitable for future measurements with other targets.
- Published
- 2020
- Full Text
- View/download PDF
3. FACTORS AND CONDITIONS FOR THE DEVELOPMENT OF CONSUMER COOPERATION
- Author
-
A. A. Inshakov and V. G. Egorov
- Subjects
Business ,Industrial organization - Abstract
The article considers the conditions and factors of development of Russian consumer cooperation against the background of global cooperative development Renaissance. It is stated that this form of cooperative organization can make a significant contribution to the implementation of the UN sustainable development Goals. The conditions and growth factors of Russian consumer societies are analyzed taking into account a deep axiological and concrete historical context. For the research of the object set in the article, the data of the original sociological material are used. For the objectivity of the described prerequisites for the development of Russian consumer cooperation, the facts of the most successful international experience in stimulating the cooperative initiative of the population are given. The conclusions summarizing the author's research state that the modern state policy of Russia in the sphere of cooperation needs a significant restructuring.
- Published
- 2020
- Full Text
- View/download PDF
4. Development of equipment for forming thin-walled precision pipes from titanium alloys and corrosion-resistant steels
- Author
-
M. A. Vasechkin, V. G. Egorov, O. Yu Davydov, E. V. Matveyeva, A. V. Pribytkov, and E. D. Chertov
- Published
- 2022
- Full Text
- View/download PDF
5. Industrial Reactor Power Monitoring Using Antineutrino Counts in the DANSS Detector
- Author
-
V. Belov, Yu. Shitov, N. Pogorelov, M. Danilov, Ye. Shevchik, A. S. Kuznetsov, D. Medvedev, G. G. Guzeev, N. Rumyantseva, V. M. Nesterov, I. Zhitnikov, V. A. Khvatov, M. Shirchenko, D. Ponomarev, I. V. Machikhiliyan, M. Fomina, E. Samigullin, A. Starostin, I. Rozova, E. Tarkovsky, V. Yu. Rusinov, D. R. Zinatulina, A.G. Olshevsky, D.V. Filosofov, V. M. Chapaev, S. Kazartsev, V. G. Egorov, I. G. Alekseev, V. B. Brudanin, D. N. Svirida, N. Skrobova, and A. S. Kobyakin
- Subjects
Physics ,Nuclear and High Energy Physics ,Nuclear fuel ,010308 nuclear & particles physics ,Nuclear engineering ,Detector ,Flux ,Nuclear reactor ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Particle detector ,law.invention ,law ,0103 physical sciences ,Measuring instrument ,Neutrino ,010306 general physics ,Energy source - Abstract
Detection of antineutrino by the reaction of the inverse β-decay can be used for an independent monitoring of a nuclear reactor power. DANSS detector is located directly under a commercial WWER-1000 reactor and counts up to 5000 antineutrino per day, providing the accuracy of 1.5% in 2 days of the flux measurement. A powerful system of the passive and active shielding in combination with the fine spatial segmentation of the detector allows to diminish the contribution of the background processes to a level, negligible in comparison to the statistical error. The influence of the nuclear fuel composition on the neutrino flux can be accounted for based on the input from the NPP staff.
- Published
- 2019
- Full Text
- View/download PDF
6. Measuring the Neutrino Helicity with a Compton Polarimeter
- Author
-
M. Shirchenko, Yu. Shitov, I. Zhitnikov, V. G. Egorov, and V. B. Brudanin
- Subjects
Physics ,Systematic error ,Nuclear and High Energy Physics ,Radiation ,Physics::Instrumentation and Detectors ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarimeter ,Helicity ,Atomic and Molecular Physics, and Optics ,Total error ,Nuclear physics ,High Energy Physics::Experiment ,Radiology, Nuclear Medicine and imaging ,Neutrino - Abstract
A possible right-handed component affecting electron-neutrino helicity is probed using a Compton polarimeter. Compared to previous experiments of this kind, the systematic uncertainty is significantly reduced by independently calibrating the polarimeter efficiency. The electron-neutrino helicity is measured as $$H = - 1.01 \pm 0.20,$$ in agreement with previous measurements. The bigger than expected total error on H largely arises from the relatively low efficiency of the polarimeter. In connection with this, one should reanalyze the results of previous experiments.
- Published
- 2019
- Full Text
- View/download PDF
7. First Search for Bosonic Superweakly Interacting Massive Particles with Masses up to 1 MeV/c2 with GERDA
- Author
-
K. Panas, M. M. Wojcik, V. N. Kornoukhov, K. Pelczar, A.-K. Schütz, E. Bellotti, L. B. Bezrukov, E. Shevchik, N. Di Marco, Alessandro Bettini, Manfred Lindner, W. Maneschg, Guillaume Lutter, A. M. Bakalyarov, E. A. Yanovich, T. Wester, A.A. Smolnikov, O.I. Kochetov, Laura Baudis, C. Cattadori, Anna Julia Zsigmond, V. G. Egorov, Kai Zuber, R. Brugnera, O. Selivanenko, R. Mingazheva, Th. Kihm, M. Balata, A. A. Vasenko, V. V. Kuzminov, Matteo Agostini, L. Rauscher, B. Schwingenheuer, M. Junker, Werner Hofmann, V. I. Gurentsov, A. Zschocke, V. Bothe, Paolo Piseri, Allen Caldwell, A. M. Gangapshev, E. Doroshkevich, I. V. Kirpichnikov, H. Khushbakht, P. Moseev, Jochen Schreiner, P. Grabmayr, Luciano Pandola, Bayarto Lubsandorzhiev, L. V. Inzhechik, C. Vignoli, A. Lazzaro, M. Miloradovic, K. von Sturm, A. A. Klimenko, L. Pertoldi, M. Schwarz, A. Garfagnini, O. Schulz, A. Pullia, K. N. Gusev, A. Lubashevskiy, N. Rumyantseva, K. T. Knöpfle, C. Macolino, Cinzia Sada, V.B. Brudanin, C. Ransom, Hardy Simgen, B. Zatschler, I. R. Barabanov, C. Gooch, R. Kneißl, S. V. Zhukov, Josef Jochum, S. Schönert, V. V. Kazalov, Franz Dieter Fischer, T. Comellato, M. Laubenstein, A. V. Veresnikova, A. Chernogorov, R. Hiller, G. Zuzel, P. Krause, Y. Kermaïdic, Ivano Lippi, J. Hakenmüller, C. Wiesinger, M. Shirchenko, V. D'Andrea, M. Fomina, D. Stukov, E. Bossio, F. Salamida, C. Bauer, Stefano Riboldi, M. Misiaszek, M. Schütt, D. Borowicz, J. Janicskó Csáthy, I. Zhitnikov, Igor Nemchenok, Bela Majorovits, E. V. Demidova, S. Belogurov, D. R. Zinatulina, Mikael Hult, and S. Hemmer
- Subjects
Physics ,Particle physics ,2019-20 coronavirus outbreak ,Photon ,Coronavirus disease 2019 (COVID-19) ,Physics::Instrumentation and Detectors ,Dark matter ,General Physics and Astronomy ,chemistry.chemical_element ,Germanium ,Electron ,7. Clean energy ,01 natural sciences ,Pseudoscalar ,chemistry ,0103 physical sciences ,High Energy Physics::Experiment ,Nuclear Experiment ,010306 general physics ,Dimensionless quantity - Abstract
We present the first search for bosonic superweakly interacting massive particles (super-WIMPs) as keV-scale dark matter candidates performed with the GERDA experiment. GERDA is a neutrinoless double-s decay experiment which operates high-purity germanium detectors enriched in ^{76}Ge in an ultralow background environment at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN in Italy. Searches were performed for pseudoscalar and vector particles in the mass region from 60 keV/c^{2} to 1 MeV/c^{2}. No evidence for a dark matter signal was observed, and the most stringent constraints on the couplings of super-WIMPs with masses above 120 keV/c^{2} have been set. As an example, at a mass of 150 keV/c^{2} the most stringent direct limits on the dimensionless couplings of axionlike particles and dark photons to electrons of g_{ae}
- Published
- 2020
- Full Text
- View/download PDF
8. Search for the double-beta decay of 82Se to the excited states of 82Kr with NEMO-3
- Author
-
F. Nova, Vit Vorobel, B. Morgan, C. L. Riddle, A. Smetana, Jose Busto, P. Guzowski, Y. Lemière, A. Remoto, A. Chapon, R. Breier, P. Loaiza, A. Basharina-Freshville, F. Xie, Yu. Shitov, J. C. Thomas, J. K. Sedgbeer, A.A. Smolnikov, Y. A. Ramachers, C. Cerna, M. Macko, A. Minotti, X. Sarazin, E. Chauveau, V.E. Kovalenko, Pavel P. Povinec, F. Mauger, G. Eurin, B. Richards, G. Szklarz, F. Perrot, Vl. I. Tretyak, O.I. Kochetov, C. Augier, H. Tedjditi, M. Cascella, S. Blot, S. Blondel, J.P. Cesar, S. Torre, B. Guillon, I. Stekl, Frédéric Nowacki, F. Piquemal, V. Palusova, F. Mamedov, Fedor Šimkovic, Igor Nemchenok, R. Salazar, A. Žukauskas, D. Duchesneau, J. Mott, L. Dawson, C. Vilela, P. Přidal, C. Hugon, Jouni Suhonen, R. Arnold, D. Lalanne, D. Waters, C.S. Sutton, Ch. Marquet, S. Söldner-Rembold, J. J. Evans, H. Gómez, A. Pin, Karol Lang, A. Huber, C. Patrick, A. A. Klimenko, D. Boursette, Ruben Saakyan, Guillaume Lutter, J. L. Reyss, R. B. Pahlka, I. Vanushin, L. Simard, G. Oliviéro, V. I. Tretyak, A. Chopra, Z. J. Liptak, Lukas Fajt, A. S. Barabash, H. Ohsumi, C. Girard-Carillo, Ph. Hubert, X. Garrido, T. Le Noblet, Dominique Durand, C. Macolino, R. L. Flack, M. Bongrand, D.V. Filosofov, S. Jullian, S. I. Konovalov, Masaharu Nomachi, S. Calvez, V. V. Timkin, V. G. Egorov, E. Rukhadze, X.R. Liu, V.I. Umatov, V. Brudanin, A. J. Caffrey, R. Hodák, Karel Smolek, B. Soulé, Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire Souterrain de Modane (LSM - UMR 6417), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), NEMO-3, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire d'Annecy de Physique des Particules (LAPP), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Particle Physics and Astronomy Research Council (PPARC), Science and Technology Facilities Council (STFC), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Arnold, R, Augier, C, Barabash, A, Basharina-Freshville, A, Blondel, S, Blot, S, Bongrand, M, Boursette, D, Breier, R, Brudanin, V, Busto, J, Caffrey, A, Calvez, S, Cascella, M, Cerna, C, Cesar, J, Chapon, A, Chauveau, E, Chopra, A, Dawson, L, Duchesneau, D, Durand, D, Egorov, V, Eurin, G, Evans, J, Fajt, L, Filosofov, D, Flack, R, Garrido, X, Girard-Carillo, C, Gomez, H, Guillon, B, Guzowski, P, Hodak, R, Huber, A, Hubert, P, Hugon, C, Jullian, S, Klimenko, A, Kochetov, O, Konovalov, S, Kovalenko, V, Lalanne, D, Lang, K, Lemiere, Y, Le Noblet, T, Liptak, Z, Liu, X, Loaiza, P, Lutter, G, Macko, M, Macolino, C, Mamedov, F, Marquet, C, Mauger, F, Minotti, A, Morgan, B, Mott, J, Nemchenok, I, Nomachi, M, Nova, F, Nowacki, F, Ohsumi, H, Oliviero, G, Pahlka, R, Palusova, V, Patrick, C, Perrot, F, Pin, A, Piquemal, F, Povinec, P, Pridal, P, Ramachers, Y, Remoto, A, Reyss, J, Richards, B, Riddle, C, Rukhadze, E, Saakyan, R, Salazar, R, Sarazin, X, Sedgbeer, J, Shitov, Y, Simard, L, Simkovic, F, Smetana, A, Smolek, K, Smolnikov, A, Soldner-Rembold, S, Soule, B, Stekl, I, Suhonen, J, Sutton, C, Szklarz, G, Tedjditi, H, Thomas, J, Timkin, V, Torre, S, Tretyak, V, Umatov, V, Vanushin, I, Vilela, C, Vorobel, V, Waters, D, Xie, F, and Zukauskas, A
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Analytical chemistry ,Se ,Double beta decay ,Excited state ,Neutrino ,FOS: Physical sciences ,gamma ray: particle identification ,01 natural sciences ,NO ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,PE2_2 ,Neutrino Ettore Majorana Observatory ,0201 Astronomical and Space Sciences ,0103 physical sciences ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,82Se ,Double beta decay, Neutrino, 82Se, excited state ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,physics.ins-det ,0206 Quantum Physics ,Physics ,hep-ex ,010308 nuclear & particles physics ,double-beta decay ,Instrumentation and Detectors (physics.ins-det) ,State (functional analysis) ,krypton: nuclide ,Nuclear & Particles Physics ,0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics ,selenium: nuclide ,nucleus: excited state ,experimental results - Abstract
The double-beta decay of 82Se to the 0 1 + excited state of 82Kr has been studied with the NEMO-3 detector using 0.93 kg of enriched 82Se measured for 4.75 y, corresponding to an exposure of 4.42 kg⋅y. A dedicated analysis to reconstruct the γ-rays has been performed to search for events in the 2e2γ channel. No evidence of a 2 ν β β decay to the 0 1 + state has been observed and a limit of T 1 / 2 2 ν ( Se 82 , 0 g s + → 0 1 + ) > 1.3 × 10 21 y at 90% CL has been set. Concerning the 0 ν β β decay to the 0 1 + state, a limit for this decay has been obtained with T 1 / 2 0 ν ( Se 82 , 0 g s + → 0 1 + ) > 2.3 × 10 22 y at 90% CL, independently from the 2 ν β β decay process. These results are obtained for the first time with a tracko-calo detector, reconstructing every particle in the final state.
- Published
- 2020
- Full Text
- View/download PDF
9. The Low-Background HPGE Γ-Spectrometer OBELIX for the Investigation of the Double Beta Decay to Excited States
- Author
-
A. A. Klimenko, V. G. Egorov, E. Rukhadze, G. Warot, N. I. Rukhadze, P. Loaiza, Yu. Shitov, R. Hodák, I. Stekl, M. Zampaolo, F. Mamedov, F. Piquemal, E. A. Yakushev, and V. B. Brudanin
- Subjects
Nuclear physics ,Physics ,Spectrometer ,Double beta decay ,Excited state ,010403 inorganic & nuclear chemistry ,01 natural sciences ,0104 chemical sciences ,Semiconductor detector - Published
- 2017
- Full Text
- View/download PDF
10. Modeling of GERDA Phase II data
- Author
-
A. Domula, M. Schwarz, Laura Baudis, C. Wiesinger, Paolo Piseri, M. Shirchenko, A. Lazzaro, E. Bossio, I. V. Kirpichnikov, Alessandro Bettini, D. R. Zinatulina, M. Miloradovic, E. V. Demidova, A. V. Veresnikova, A. Chernogorov, R. Hiller, R. Kneißl, S. Belogurov, V. D'Andrea, Stefano Riboldi, V.B. Brudanin, C. Ransom, Igor Nemchenok, M. Schütt, M. Misiaszek, Cinzia Sada, B. Zatschler, Bela Majorovits, C. Macolino, Hardy Simgen, W. Maneschg, E. A. Yanovich, P. Moseev, Luciano Pandola, A. A. Klimenko, C. Vignoli, R. Brugnera, Mikael Hult, D. Borowicz, K. N. Gusev, Jochen Schreiner, L. Pertoldi, F. Fischer, Josef Jochum, N. Rumyantseva, V. V. Kuzminov, Matteo Agostini, V. I. Gurentsov, S. Hemmer, Y. Kermaïdic, J. Janicskó Csáthy, Stefan Schönert, E. Doroshkevich, Bayarto Lubsandorzhiev, L. V. Inzhechik, Ivano Lippi, Manfred Lindner, E. Bellotti, T. Wester, A.A. Smolnikov, K. Panas, I. Zhitnikov, V. Bothe, C. Cattadori, Anna Julia Zsigmond, Kai Zuber, A. Zschocke, L. B. Bezrukov, E. Shevchik, A.-K. Schütz, Marcin Wójcik, V. N. Kornoukhov, M. Fomina, P. Grabmayr, K. Pelczar, N. Di Marco, O.I. Kochetov, Guillaume Lutter, A. M. Bakalyarov, I. R. Barabanov, A. M. Gangapshev, C. Gooch, S. V. Zhukov, Thomas Kihm, O. Selivanenko, R. Mingazheva, B. Schwingenheuer, M. Junker, Oliver Schulz, Alberto Pullia, V. G. Egorov, M. Balata, A. Garfagnini, K. T. Knöpfle, T. Comellato, L. Vanhoefer, Matthias Laubenstein, G. Zuzel, V. V. Kazalov, P. Krause, A. A. Vasenko, Christian Bauer, A. Lubashevskiy, J. Hakenmüller, D. Stukov, Werner Hofmann, F. Salamida, Allen Caldwell, and K. von Sturm
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Spectrum (functional analysis) ,Detector ,Phase (waves) ,FOS: Physical sciences ,Order (ring theory) ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,Semiconductor detector ,ddc ,Region of interest ,0103 physical sciences ,Dark Matter and Double Beta Decay (experiments) ,lcsh:QC770-798 ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,DOUBLE-BETA DECAY ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,Neutrino ,010306 general physics ,Nuclear Experiment - Abstract
The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ) decay of 76Ge. The technological challenge of Gerda is to operate in a “background-free” regime in the region of interest (ROI) after analysis cuts for the full 100 kg·yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around Qββ for the 0νββ search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for Gerda Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of $$ {16.04}_{-0.85}^{+0.78}\cdotp {10}^{-3} $$ 16.04 − 0.85 + 0.78 · 10 − 3 cts/(keV·kg·yr) for the enriched BEGe data set and $$ {14.68}_{-0.52}^{+0.47}\cdotp {10}^{-3} $$ 14.68 − 0.52 + 0.47 · 10 − 3 cts/(keV·kg·yr) for the enriched coaxial data set. These values are similar to the one of Phase I despite a much larger number of detectors and hence radioactive hardware components.
- Published
- 2019
11. Detailed studies of $^{100}$Mo two-neutrino double beta decay in NEMO-3
- Author
-
S. Blot, I. Vanushin, Lukas Fajt, M. Bongrand, Frédéric Nowacki, Karel Smolek, R. Saakyan, C. Vilela, B. Soulé, C. Augier, Masaharu Nomachi, Vl. I. Tretyak, S. Jullian, A. Smetana, V.E. Kovalenko, H. Gómez, Y. A. Ramachers, Jose Busto, F. Mauger, J. J. Evans, P. Guzowski, Y. Lemière, A. S. Barabash, S. Calvez, C. Patrick, A. Huber, D.V. Filosofov, M. Macko, Jouni Suhonen, A. Chapon, X. Sarazin, F. Xie, A. Chopra, Z. J. Liptak, A. J. Caffrey, R. Hodák, A. Žukauskas, V.I. Umatov, J.P. Cesar, Ph. Hubert, S. Torre, C. Girard-Carillo, X. Garrido, V. G. Egorov, O.I. Kochetov, S. Söldner-Rembold, F. Mamedov, E. Rukhadze, Yu. Shitov, V. Brudanin, D. Boursette, G. Eurin, D. Waters, J. C. Thomas, J. K. Sedgbeer, S. I. Konovalov, H. Ohsumi, F. Piquemal, T. Le Noblet, E. Chauveau, Guillaume Lutter, Dominique Durand, R. Dvornický, C. Cerna, Kevin Lang, Pavel P. Povinec, Ch. Marquet, C. Macolino, G. Oliviéro, C. Hugon, F. Nova, A. Minotti, A. Pin, R. L. Flack, L. Dawson, D. Lalanne, J. L. Reyss, B. Morgan, Michele Cascella, P. Loaiza, C. L. Riddle, R. B. Pahlka, L. Simard, D. Duchesneau, A. Remoto, R. Salazar, X.R. Liu, C.S. Sutton, R. Arnold, V. I. Tretyak, A.A. Smolnikov, G. Szklarz, B. Guillon, Fedor Šimkovic, P. Přidal, Igor Nemchenok, J. Mott, V. V. Timkin, Vit Vorobel, A. Salamatin, A. Basharina-Freshville, F. Perrot, H. Tedjditi, S. Blondel, I. Stekl, Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire Souterrain de Modane (LSM - UMR 6417), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), NEMO-3, Arnold, R, Augier, C, Barabash, A, Basharina-Freshville, A, Blondel, S, Blot, S, Bongrand, M, Boursette, D, Brudanin, V, Busto, J, Caffrey, A, Calvez, S, Cascella, M, Cerna, C, Cesar, J, Chapon, A, Chauveau, E, Chopra, A, Dawson, L, Duchesneau, D, Durand, D, Dvornicky, R, Egorov, V, Eurin, G, Evans, J, Fajt, L, Filosofov, D, Flack, R, Garrido, X, Girard-Carillo, C, Gomez, H, Guillon, B, Guzowski, P, Hodak, R, Huber, A, Hubert, P, Hugon, C, Jullian, S, Kochetov, O, Konovalov, S, Kovalenko, V, Lalanne, D, Lang, K, Lemiere, Y, Noblet, T, Liptak, Z, Liu, X, Loaiza, P, Lutter, G, Macko, M, Macolino, C, Mamedov, F, Marquet, C, Mauger, F, Minotti, A, Morgan, B, Mott, J, Nemchenok, I, Nomachi, M, Nova, F, Nowacki, F, Ohsumi, H, Oliviero, G, Pahlka, R, Patrick, C, Perrot, F, Pin, A, Piquemal, F, Povinec, P, Pridal, P, Ramachers, Y, Remoto, A, Reyss, J, Riddle, C, Rukhadze, E, Saakyan, R, Salamatin, A, Salazar, R, Sarazin, X, Sedgbeer, J, Shitov, Y, Simard, L, Simkovic, F, Smetana, A, Smolek, K, Smolnikov, A, Soldner-Rembold, S, Soule, B, Stekl, I, Suhonen, J, Sutton, C, Szklarz, G, Tedjditi, H, Thomas, J, Timkin, V, Torre, S, Tretyak, V, Umatov, V, Vanushin, I, Vilela, C, Vorobel, V, Waters, D, Xie, F, Zukauskas, A, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire d'Annecy de Physique des Particules (LAPP), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Science and Technology Facilities Council (STFC)
- Subjects
Particle physics ,S029MT ,Physics and Astronomy (miscellaneous) ,FOS: Physical sciences ,Elementary particle ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,nucl-ex ,invariance: Lorentz ,01 natural sciences ,7. Clean energy ,neutrinoless double beta decay ,decay modes ,Physics, Particles & Fields ,double-beta decay: (0neutrino) ,SEARCH ,Double beta decay ,0103 physical sciences ,ground state ,Nuclear Experiment (nucl-ex) ,010306 general physics ,0206 Quantum Physics ,Engineering (miscellaneous) ,Nuclear Experiment ,Majoron ,S076H2N ,Physics ,Science & Technology ,HALF-LIFE ,010308 nuclear & particles physics ,MO-100 ,High Energy Physics::Phenomenology ,Nuclear & Particles Physics ,violation: Lorentz ,nucleus: transition ,STATES ,statistics ,Physical Sciences ,0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics ,spectral ,electron: energy spectrum ,High Energy Physics::Experiment ,Neutrino ,Ground state ,Energy (signal processing) ,Radioactive decay ,Lepton - Abstract
The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $^{100}$Mo to the ground state of $^{100}$Ru, $T_{1/2} = \left[ 6.81 \pm 0.01\,\left(\mbox{stat}\right) ^{+0.38}_{-0.40}\,\left(\mbox{syst}\right) \right] \times10^{18}$ y. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $5\times10^5$ events and a signal-to-background ratio of ~80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limits on Majoron emitting neutrinoless double beta decay modes with spectral indices of n=2,3,7, as well as constraints on Lorentz invariance violation and on the bosonic neutrino contribution to the two-neutrino double beta decay mode are obtained., 11 pages, 9 figures
- Published
- 2019
- Full Text
- View/download PDF
12. Ordinary muon capture studies for the matrix elements in ββ decay
- Author
-
I. Yutlandov, M. Shirchenko, V. G. Egorov, C. Petitjean, Jouni Suhonen, V. B. Brudanin, and D. R. Zinatulina
- Subjects
Physics ,Muon ,ta114 ,010308 nuclear & particles physics ,energy levels and level densities ,chemistry.chemical_element ,double beta decay ,Germanium ,hiukkasfysiikka ,01 natural sciences ,nuclear structure and decays ,Muon capture ,electron and muon capture ,Matrix (mathematics) ,chemistry ,Excited state ,0103 physical sciences ,Atomic physics ,Nuclear Experiment ,010306 general physics ,ydinfysiikka ,Energy (signal processing) ,Intensity (heat transfer) - Abstract
Precise measurement of $\gamma$-rays following ordinary (non-radiative) capture of negative muons by natural Se, Kr, Cd and Sm, as well as isotopically enriched $^{48}$Ti, $^{76}$Se, $^{82}$Kr, $^{106}$Cd and $^{150}$Sm targets was performed by means of HPGe detectors. Energy and time distributions were investigated and total life time of negative muon in different isotopes was deduced. Detailed analysis of $\gamma$-lines intensity allows to extract relative yield of several daughter nuclei and partial rates of ($\mu$,$\nu$) capture to numerous excited levels of the $^{48}$Sc, $^{76}$As, $^{82}$Br, $^{106}$Ag and $^{150}$Tc isotopes which are considered to be virtual states of an intermediate odd-odd nucleus in 2$\beta$-decay of $^{48}$Ca, $^{76}$Ge, $^{82}$Se, $^{106}$Cd and $^{150}$Nd, respectively. These rates are important as an experimental input for the theoretical calculation of the nuclear matrix elements of 2$\beta$-decay., Comment: 14 pages, 13 figures, article, with editors in Physical Review C; the structure of the article was totally revised concerning the Referee remarks and journal requirements (the figures were reordered, the format of figures have been changed), the 3 additional Figures and 1 Table were included
- Published
- 2019
13. Electrochemical water treatment plant for food production
- Author
-
M. A. Vasechkin, O. Yu. Davydov, E. D. Chertov, V. G. Egorov, and A. V. Pribytkov
- Subjects
business.industry ,Food processing ,Environmental science ,Water treatment ,business ,Pulp and paper industry ,Electrochemistry - Abstract
The development of new methods or equipment for water purification in recent years has been an important task. Of the existing methods as promising ones, we can distinguish electrochemical non-reagent purification methods. A design of a water treatment plant has been developed, the main elements of which are a device for electrochemical treatment with electrodes made of titanium alloys and a filter for fine mechanical cleaning. This plant has passed a set of laboratory tests and testing as part of a mobile integrated water treatment plant. According to the test results, it has been found that electrodes made of titanium alloys with the highest titanium content have the best resistance to electrochemical destruction. The rational current density and the range of the gap between the electrodes are determined, which ensure effective water purification with an extended overhaul cycle and sufficiently low metal consumption and energy consumption.
- Published
- 2021
- Full Text
- View/download PDF
14. Shaping High-Longevity Components of Corrosion-Resistant Pipes by Rotary Rolling
- Author
-
V. G. Egorov, M. A. Vasechkin, O. Yu. Davydov, and I. N. Maslov
- Subjects
Engineering ,business.industry ,020209 energy ,General Chemical Engineering ,0211 other engineering and technologies ,Process (computing) ,Energy Engineering and Power Technology ,02 engineering and technology ,Structural engineering ,Welding ,law.invention ,Power (physics) ,Fuel Technology ,Geochemistry and Petrology ,law ,021105 building & construction ,Corrosion resistant ,0202 electrical engineering, electronic engineering, information engineering ,Torque ,business ,Joint (geology) - Abstract
A mathematical model of the process of rotary rolling out of thin-walled pipe billets is developed. It is used to derive a relationship for the torque as the key power and force parameter of the process, which expresses explicitly the influence of the geometric parameters of the rolled-out pipe, the mechanical properties of the material and the mechanisms of its strengthening, and the structural parameters of the operating tool on the stability of the rotary rolling process. It is shown that use of straight-seamed pipe billets with roller welded joint, in combination with potential application of automatic argon-arc welding of circular joints, can significantly extend the life of pipes made from corrosion-resistant materials.
- Published
- 2016
- Full Text
- View/download PDF
15. Increasing the strength of welded thin-walled axisymmetric vessels made of corrosion-resistant steel
- Author
-
V. G. Egorov, M. A. Vasechkin, O. Yu. Davydov, S. V. Egorov, and E. V. Matveeva
- Subjects
History ,Materials science ,law ,Corrosion resistant ,cardiovascular system ,technology, industry, and agriculture ,Rotational symmetry ,Thin walled ,Welding ,Composite material ,Computer Science Applications ,Education ,law.invention - Abstract
Structural elements of thin-walled vessels operating under internal pressure are mainly made from sheet blanks using welding operations. To reduce the negative impact of welds in the manufacture of thin-walled vessels, it is proposed to use separate calibration processes by compressing vessel parts with subsequent welding and their joint calibration by distribution and rotary rolling. Compression calibration ensures the accuracy of matching of the abutting annular edges of the vessel parts. During rotary rolling, the welds are simultaneously smoothed and the strength characteristics are improved due to plastic hardening caused by thinning and leveling the wall thickness of the vessel body. Based on the conducted research, technological recommendations have been developed for the manufacture of thin-walled vessels of increased strength from corrosion-resistant steels.
- Published
- 2020
- Full Text
- View/download PDF
16. Signal imaging from S3—80-channel detector of reactor antineutrinos
- Author
-
Zdeněk Kruliš, V. B. Brudanin, T. Slavicek, M. Petro, E. Shevchik, I. Stekl, V. G. Egorov, I. Zhitnikov, E. Rukhadze, M. Macko, M. Fomina, V. Belov, Petr Masek, M. Slavickova, S. Kazartsev, Lukas Fajt, Karel Smolek, R. Hodák, Danuše Michálková, and P. Pridal
- Subjects
Physics ,business.industry ,Detector ,Signal ,Particle detector ,Optics ,Neutrino detector ,Antimatter ,Measuring instrument ,business ,Energy source ,Instrumentation ,Mathematical Physics ,Communication channel - Published
- 2020
- Full Text
- View/download PDF
17. Searching for neutrinoless double beta decay with GERDA
- Author
-
S. Hemmer, V. N. Kornoukhov, Matthias Laubenstein, K. Pelczar, V. G. Egorov, K. T. Knöpfle, R. Brugnera, M. Balata, A. A. Vasenko, Guillaume Lutter, T. Wester, A. M. Bakalyarov, V. I. Lebedev, A.A. Smolnikov, A. Lazzaro, V. V. Kuzminov, Matteo Agostini, C. Wiesinger, L. Vanhoefer, Thomas Kihm, B. Schneider, Anna Julia Zsigmond, M. Shirchenko, E. Doroshkevich, Manfred Lindner, L. B. Bezrukov, Oliver Schulz, Kai Zuber, C. Macolino, L. Stanco, V. V. Kazalov, E. Shevchik, O.I. Kochetov, G. Zuzel, R. Falkenstein, H. V. Kirpichnikov, Jochen Schreiner, Alberto Pullia, A. Garfagnini, D. R. Zinatulina, O. Selivanenko, V.B. Brudanin, C. Ransom, J. Janicsko, A.-K. Schütz, Hardy Simgen, Werner Hofmann, Allen Caldwell, M. Miloradovic, V. I. Gurentsov, K. N. Gusev, A. Hegai, K. Panas, T. Bode, A. Kish, A. M. Gangapshev, Marcin Wójcik, N. Di Marco, R. Mingazheva, Christian Bauer, A. Lubashevskiy, A. Domula, R. Kneiβl, Cinzia Sada, M. Junker, J. Hakenmüller, P. Grabmayr, B. Schwingenheuer, K. von Sturm, Mikael Hult, R. Hiller, Stefano Riboldi, E. Bellotti, Bayarto Lubsandorzhiev, Stefan Schönert, C. Gooch, P. Moseev, Luciano Pandola, V. Wagner, I. Zhitnikov, I. R. Barabanov, Laura Baudis, M. Misiaszek, A. A. Klimenko, M. Heisel, N. Rumyantseva, F. Salamida, S. V. Zhukov, Alessandro Bettini, B. Cattadori, A. Kirsch, Y. Kermaïdic, V. D'Andrea, Ivano Lippi, L. V. Inzhechik, W. Maneschg, E. A. Yanovich, C. Schmitt, A. V. Veresnikova, A. Chernogorov, J. Jochum Csáthy, A. Wegmann, Igor Nemchenok, Bela Majorovits, E. V. Demidova, and S. Belogurov
- Subjects
Paper ,Physics ,History ,Particle physics ,Physics - Instrumentation and Detectors ,Double beta decay ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,ddc ,Computer Science Applications ,Education - Abstract
The GERmanium Detector Array (GERDA) experiment located at the INFN Gran Sasso Laboratory (Italy), is looking for the neutrinoless double beta decay of Ge76, by using high-purity germanium detectors made from isotopically enriched material. The combination of the novel experimental design, the careful material selection for radio-purity and the active/passive shielding techniques result in a very low residual background at the Q-value of the decay, about 1e-3 counts/(keV kg yr). This makes GERDA the first experiment in the field to be background-free for the complete design exposure of 100 kg yr. A search for neutrinoless double beta decay was performed with a total exposure of 47.7 kg yr: 23.2 kg yr come from the second phase (Phase II) of the experiment, in which the background is reduced by about a factor of ten with respect to the previous phase. The analysis presented in this paper includes 12.4 kg yr of new Phase II data. No evidence for a possible signal is found: the lower limit for the half-life of Ge76 is 8.0e25 yr at 90% CL. The experimental median sensitivity is 5.8e25 yr. The experiment is currently taking data. As it is running in a background-free regime, its sensitivity grows linearly with exposure and it is expected to surpass 1e26 yr within 2018., 8 pages, to appear in the proceedings of TAUP2017
- Published
- 2020
- Full Text
- View/download PDF
18. Final results on $${}^\mathbf{82 }{\hbox {Se}}$$ double beta decay to the ground state of $${}^\mathbf{82 }{\hbox {Kr}}$$ from the NEMO-3 experiment
- Author
-
Ph. Hubert, F. Nova, A. Basharina-Freshville, F. Piquemal, O.I. Kochetov, B. Morgan, A. S. Barabash, C. L. Riddle, G. Eurin, A. Remoto, D.V. Filosofov, H. Ohsumi, A. J. Caffrey, T. Le Noblet, Dominique Durand, S. I. Konovalov, R. Hodák, P. Přidal, R. Saakyan, F. Xie, N.I. Rukhadze, Michele Cascella, R. L. Flack, B. Guillon, S. Calvez, Karol Lang, X.R. Liu, P. Loaiza, Jouni Suhonen, Jose Busto, P. Guzowski, Y. Lemière, S. Jullian, C.S. Sutton, Ch. Marquet, C. Macolino, C. Hugon, Karel Smolek, A. A. Klimenko, A. Chopra, Z. J. Liptak, A.A. Smolnikov, Yu. Shitov, B. Soulé, C. Vilela, A. Chapon, J. L. Reyss, Lukas Fajt, X. Sarazin, V.E. Kovalenko, R. B. Pahlka, F. Perrot, F. Mauger, Fedor Šimkovic, Guillaume Lutter, J. J. Evans, D. Lalanne, Igor Nemchenok, F. Nowacki, C. Augier, J. Mott, Y. A. Ramachers, S. Blot, G. Szklarz, M. Bongrand, J. C. Thomas, A. Huber, J.P. Cesar, S. Torre, F. Mamedov, I. Vanushin, V. I. Tretyak, C. Cerna, D. Boursette, V. V. Timkin, D. Waters, L. Dawson, D. Duchesneau, V.I. Umatov, C. Patrick, X. Garrido, Vl. I. Tretyak, V. Brudanin, S. Söldner-Rembold, R. Salazar, R. Arnold, A. Smetana, A. Žukauskas, H. Gómez, E. Chauveau, Pavel P. Povinec, Masaharu Nomachi, L. Simard, V. G. Egorov, E. Rukhadze, Vit Vorobel, S. Blondel, and I. Stekl
- Subjects
Physics ,Particle physics ,Physics and Astronomy (miscellaneous) ,010308 nuclear & particles physics ,01 natural sciences ,Lepton number ,MAJORANA ,Double beta decay ,0103 physical sciences ,Beta (velocity) ,Neutrino Ettore Majorana Observatory ,Neutrino ,010306 general physics ,Ground state ,Engineering (miscellaneous) ,Majoron - Abstract
Using data from the NEMO-3 experiment, we have measured the two-neutrino double beta decay ( $2\nu \beta \beta $ ) half-life of$^{82}$ Se as $T_{\smash {1/2}}^{2\nu } \!=\! \left[ 9.39 \pm 0.17\left( \text{ stat }\right) \pm 0.58\left( \text{ syst }\right) \right] \times 10^{19}$ y under the single-state dominance hypothesis for this nuclear transition. The corresponding nuclear matrix element is $\left| M^{2\nu }\right| = 0.0498 \pm 0.0016$ . In addition, a search for neutrinoless double beta decay ( $0\nu \beta \beta $ ) using 0.93 kg of$^{82}$ Se observed for a total of 5.25 y has been conducted and no evidence for a signal has been found. The resulting half-life limit of $T_{1/2}^{0\nu } > 2.5 \times 10^{23} \,\text{ y } \,(90\%\,\text{ C.L. })$ for the light neutrino exchange mechanism leads to a constraint on the effective Majorana neutrino mass of $\langle m_{\nu } \rangle < \left( 1.2{-}3.0\right) \,\text{ eV }$ , where the range reflects $0\nu \beta \beta $ nuclear matrix element values from different calculations. Furthermore, constraints on lepton number violating parameters for other $0\nu \beta \beta $ mechanisms, such as right-handed currents, majoron emission and R-parity violating supersymmetry modes have been set.
- Published
- 2018
- Full Text
- View/download PDF
19. Improved Limit on Neutrinoless Double- β Decay of Ge76 from GERDA Phase II
- Author
-
L. V. Inzhechik, D. R. Zinatulina, O. Schulz, Mikael Hult, T. Comellato, V. G. Egorov, M. Balata, V. Wagner, G. Zuzel, L. Vanhoefer, C. Bauer, A. A. Vasenko, T. Bode, Stefano Riboldi, A.-K. Schütz, A. Hegai, N. Di Marco, M. Misiaszek, F. Salamida, R. Brugnera, A. Garfagnini, V. V. Kuzminov, Matteo Agostini, Manfred Lindner, J. Janicskó Csáthy, V. N. Kornoukhov, Y. Kermaïdic, A. Kish, K. Pelczar, A. V. Veresnikova, J. Hakenmüller, I. Zhitnikov, Ivano Lippi, Allen Caldwell, A. Chernogorov, M. Junker, C. Wiesinger, A. Wegmann, M. Shirchenko, R. Hiller, L. Pertoldi, Igor Nemchenok, Guillaume Lutter, A. Kirsch, O. Selivanenko, A. M. Bakalyarov, A. Lubashevskiy, W. Maneschg, S. Hemmer, M. Laubenstein, E. A. Yanovich, K. von Sturm, Bela Majorovits, R. Falkenstein, P. Grabmayr, B. Schneider, I. V. Kirpichnikov, V. I. Gurentsov, V. V. Kazalov, M. Miloradovic, D. Borowicz, J. Biernat, Bayarto Lubsandorzhiev, R. Mingazheva, C. Schmitt, B. Schwingenheuer, R. Kneißl, O.I. Kochetov, Th. Kihm, A. M. Gangapshev, P. Moseev, Luciano Pandola, A. A. Klimenko, Werner Hofmann, M. Heisel, N. Rumyantseva, A. Zschocke, Alessandro Bettini, E. V. Demidova, S. Belogurov, C. Macolino, A. Pullia, Cinzia Sada, V. D'Andrea, A. Lazzaro, S. Schönert, K. Panas, T. Wester, A.A. Smolnikov, C. Cattadori, Anna Julia Zsigmond, Kai Zuber, M. M. Wojcik, E. Bellotti, E. Doroshkevich, L. B. Bezrukov, E. Shevchik, A. Domula, L. Stanco, V.B. Brudanin, C. Ransom, Hardy Simgen, Josef Jochum, I. R. Barabanov, S. V. Zhukov, K. N. Gusev, K. T. Knöpfle, and Laura Baudis
- Subjects
Semileptonic decay ,Physics ,010308 nuclear & particles physics ,Phase (waves) ,General Physics and Astronomy ,chemistry.chemical_element ,Germanium ,Type (model theory) ,01 natural sciences ,chemistry ,Double beta decay ,0103 physical sciences ,Sensitivity (control systems) ,Atomic physics ,010306 general physics ,Energy (signal processing) ,Diode - Abstract
The GERDA experiment searches for the lepton-number-violating neutrinoless double-β decay of ^{76}Ge (^{76}Ge→^{76}Se+2e^{-}) operating bare Ge diodes with an enriched ^{76}Ge fraction in liquid argon. The exposure for broad-energy germanium type (BEGe) detectors is increased threefold with respect to our previous data release. The BEGe detectors feature an excellent background suppression from the analysis of the time profile of the detector signals. In the analysis window a background level of 1.0_{-0.4}^{+0.6}×10^{-3} counts/(keV kg yr) has been achieved; if normalized to the energy resolution this is the lowest ever achieved in any 0νββ experiment. No signal is observed and a new 90% C.L. lower limit for the half-life of 8.0×10^{25} yr is placed when combining with our previous data. The expected median sensitivity assuming no signal is 5.8×10^{25} yr.
- Published
- 2018
- Full Text
- View/download PDF
20. Search for sterile neutrinos at the DANSS experiment
- Author
-
V. Belov, Yu. Shitov, I. Zhitnikov, I. G. Alekseev, D. R. Zinatulina, D.V. Filosofov, I. Rozova, I. V. Machikhiliyan, V. M. Nesterov, J. Vlasek, M. Fomina, N. Rumyantseva, V. Rusinov, D. N. Svirida, A. Starostin, N. Skrobova, E. Tarkovsky, A. S. Kobyakin, N. Pogorelov, A.G. Olshevsky, M. Shirchenko, M. Danilov, A. A. Kuznetsov, Ye. Shevchik, D. Medvedev, D. Ponomarev, V. G. Egorov, V. B. Brudanin, Z. Hons, E. Samigullin, and S. Kazartsev
- Subjects
Physics ,Nuclear and High Energy Physics ,Sterile neutrino ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,Physics::Instrumentation and Detectors ,Detector ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Scintillator ,01 natural sciences ,Spectral line ,lcsh:QC1-999 ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Nuclear reactor core ,Inverse beta decay ,0103 physical sciences ,Scintillation counter ,High Energy Physics::Experiment ,010306 general physics ,Neutrino oscillation ,lcsh:Physics - Abstract
DANSS is a highly segmented 1~m${}^3$ plastic scintillator detector. Its 2500 one meter long scintillator strips have a Gd-loaded reflective cover. The DANSS detector is placed under an industrial 3.1~$\mathrm{GW_{th}}$ reactor of the Kalinin Nuclear Power Plant 350~km NW from Moscow. The distance to the core is varied on-line from 10.7~m to 12.7~m. The reactor building provides about 50~m water-equivalent shielding against the cosmic background. DANSS detects almost 5000 $\widetilde\nu_e$ per day at the closest position with the cosmic background less than 3$\%$. The inverse beta decay process is used to detect $\widetilde\nu_e$. Sterile neutrinos are searched for assuming the $4\nu$ model (3 active and 1 sterile $\nu$). The exclusion area in the $\Delta m_{14}^2,\sin^22\theta_{14}$ plane is obtained using a ratio of positron energy spectra collected at different distances. Therefore results do not depend on the shape and normalization of the reactor $\widetilde\nu_e$ spectrum, as well as on the detector efficiency. Results are based on 966 thousand antineutrino events collected at 3 distances from the reactor core. The excluded area covers a wide range of the sterile neutrino parameters up to $\sin^22\theta_{14}, Comment: 10 pages, 13 figures, version accepted for publication
- Published
- 2018
- Full Text
- View/download PDF
21. Searching Neutrinoless Double Beta Decay with Gerda Phase II
- Author
-
V. D'Andrea, O. Schulz, L. B. Bezrukov, J. Janicskó Csáthy, Elena Sala, E. Shevchik, K. Panas, A. Lazzaro, A. Kirsch, Josef Jochum, Y. Kermaïdic, S. Schönert, W. Maneschg, Ivano Lippi, E. A. Yanovich, Stefano Nisi, R. Mingazheva, I. Zhitnikov, I. R. Barabanov, A. Lubashevskiy, C. Gooch, C. Wiesinger, S. V. Zhukov, B. Schweisshelm, B. Schwingenheuer, A. Garfagnini, M. Shirchenko, T. Wester, A. Domula, A.A. Smolnikov, C. Cattadori, Anna Julia Zsigmond, Kai Zuber, V. I. Gurentsov, T. Comellato, V. Kazalov, A. Kish, A. V. Veresnikova, L. Stanco, V. G. Egorov, M. M. Wojcik, Allen Caldwell, L. Ioannucci, Bayarto Lubsandorzhiev, V. Wagner, M. Balata, C. Ransom, C. Bauer, Stefano Riboldi, M. Junker, C. Hahne, A. Chernogorov, F. Salamida, A. A. Vasenko, Th. Kihm, L. Vanhoefer, Hardy Simgen, T. Bode, L. V. Inzhechik, S. Hemmer, M. Reissfelder, R. Hiller, V. B. Brudanin, K. von Sturm, E. Bellotti, M. Misiaszek, H. Seitz, A. Wegmann, Manfred Lindner, M. Giordano, E. Doroshkevich, Igor Nemchenok, R. Kneißl, B. Schneider, G. Zuzel, P. Moseev, Bela Majorovits, Luciano Pandola, D. R. Zinatulina, Werner Hofmann, A. A. Klimenko, M. Heisel, N. Rumyantseva, M. Laubenstein, P. Holl, J. Hakenmüller, P. Grabmayr, A. Zschocke, I. V. Kirpichnikov, Mikael Hult, E. V. Demidova, M. Miloradovic, O. Selivanenko, S. Belogurov, R. Falkenstein, Jochen Schreiner, C. Schmitt, V. N. Kornoukhov, K. Pelczar, Guillaume Lutter, A. M. Bakalyarov, A.-K. Schütz, A. Hegai, N. Di Marco, K. N. Gusev, R. Brugnera, V. V. Kuzminov, K. T. Knöpfle, Matteo Agostini, Laura Baudis, Gerd Marissens, O.I. Kochetov, A. M. Gangapshev, Alessandro Bettini, C. Macolino, A. Pullia, and Cinzia Sada
- Subjects
Physics ,Ge-76 ,Particle physics ,Double beta decay ,Phase (waves) ,Beta (velocity) ,Neutrino ,Neutrinoless double beta decay ,Semiconductor detector - Abstract
An observation of neutrinoless double beta ([Formula: see text]) decay would allow to shed light onto the nature of neutrinos. Gerda (GERmanium Detector Array) aims to discover this process in a background-free search using [Formula: see text]Ge. The experiment is located at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) in Italy. Bare, isotopically enriched, high purity germanium detectors are operated in liquid argon. Gerda follows a staged approach. In Phase II 35.6 kg of enriched germanium detectors are operated since December 2015. The application of active background rejection methods, such as a liquid argon scintillation light read-out and pulse shape discrimination of germanium detector signals, allows to reduce the background index to the intended level of [Formula: see text] cts/(keV⋅kg⋅yr). No evidence for the [Formula: see text] decay has been found in 23.2 kg⋅yr of Phase II data, and together with data from Phase I the up-to-date most stringent half-life limit for this process in [Formula: see text]Ge has been established, at a median sensitivity of 5.8⋅10[Formula: see text][Formula: see text]yr the 90[Formula: see text]% C.L. lower limit is 8.0⋅10[Formula: see text][Formula: see text]yr.
- Published
- 2018
22. Increasing the quality of thin wall straight seam pipes by rotary rolling of the welded joint
- Author
-
V. G. Egorov, A.M. Khrulev, A.B. Kolomensky, and O.Yu. Davydov
- Subjects
Materials science ,Mechanical Engineering ,Metallurgy ,Metals and Alloys ,Titanium alloy ,02 engineering and technology ,Welding ,Microstructure ,01 natural sciences ,Corrosion ,law.invention ,Pipeline transport ,020303 mechanical engineering & transports ,0203 mechanical engineering ,Mechanics of Materials ,law ,Thin wall ,0103 physical sciences ,Service life ,Composite material ,010301 acoustics ,Joint (geology) - Abstract
The main stages of manufacture of straight seam pipes from 12Cr18Ni10Ti steel and VT1-0 titanium alloy with a rolled welded joint are discussed. Recommendations are given for producing the uniform structure of the welded joint, the weld zone and the parent material of tubular components. Service life characteristics of sections of pipelines with experimental tubular blanks are determined.
- Published
- 2015
- Full Text
- View/download PDF
23. The Majorana Low-noise Low-background Front-end Electronics
- Author
-
L. E. Leviner, Yuen-Dat Chan, E. Aguayo, D. C. Radford, W. Xu, Eric W. Hoppe, Masaharu Nomachi, A. Hegai, C.M. O'Shaughnessy, M. A. Howe, Matthew Busch, K. J. Snavely, J. E. Trimble, Nicole R. Overman, O.I. Kochetov, J. Rager, D. Byram, K. Pushkin, J. MacMullin, P. J. Doe, A. S. Caldwell, J. Goett, S. MacMullin, D. C. Combs, S. R. Elliott, Kai Vetter, C.-H. Yu, C. D. Christofferson, B. Shanks, Keith Rielage, V. E. Guiseppe, K. J. Keeter, C. Wiseman, J. Gruszko, V. V. Timkin, V. G. Egorov, V.B. Brudanin, M. Shirchenko, K. Vorren, Ryuta Hazama, John L. Orrell, Alexis G. Schubert, M. P. Green, F. E. Bertrand, H. Ejiri, M. Boswell, Jeffrey K. Thompson, J. F. Wilkerson, Vladimir Yumatov, R. D. Martin, Stanley M. Howard, A. R. Young, P. Finnerty, Yu. Efremenko, K. N. Gusev, E. Romero-Romero, B. R. White, R. G. H. Robertson, M. C. Ronquest, D. G. Phillips, F. T. Avignone, R. L. Varner, Brian D. LaFerriere, Werner Tornow, F. M. Fraenkle, Reyco Henning, M. F. Kidd, James E. Fast, Jonathan D. Leon, C. Cuesta, A. S. Barabash, Richard T. Kouzes, S. I. Konovalov, Alan Poon, Anne-Marie Suriano, J. A. Detwiler, E. Yakushev, N. Snyder, Susanne Mertens, A. Galindo-Uribarri, S. J. Meijer, S. Vasilyev, A. L. Hallin, N. Abgrall, Tatsushi Shima, G. K. Giovanetti, and J. C. Loach
- Subjects
Physics ,business.industry ,Detector ,chemistry.chemical_element ,Germanium ,Substrate (electronics) ,Physics and Astronomy(all) ,Noise (electronics) ,Capacitance ,neutrinoless double beta decay ,law.invention ,Nuclear physics ,MAJORANA ,low noise ,chemistry ,law ,Double beta decay ,low background ,Optoelectronics ,charge sensitive amplifer ,Resistor ,business ,resistive-feedback front-end - Abstract
The MAJORANA DEMONSTRATOR will search for the neutrinoless double beta decay (ββ(0ν)) of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ(0ν)-decay searches, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the 76Ge ββ(0ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolution performances. We present here the low-noise low- background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the MAJORANA DEMONSTRATOR. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.
- Published
- 2015
- Full Text
- View/download PDF
24. Search for Neutrinoless Quadruple- β Decay of Nd150 with the NEMO-3 Detector
- Author
-
A. Smetana, A. Žukauskas, V. G. Egorov, R. Saakyan, X. Sarazin, E. Rukhadze, R. Salazar, S. Calvez, Vit Vorobel, F. Nova, D. Waters, O.I. Kochetov, J. J. Evans, D. Lalanne, S. Blot, Vl.I. Tretyak, A.J. Caffrey, B. Morgan, S. Söldner-Rembold, A. Huber, B. Guillon, E. Chauveau, J. Busto, J. C. Thomas, L. Dawson, Masaharu Nomachi, C. L. Riddle, A. Remoto, P. Loaiza, V. I. Tretyak, V. V. Timkin, C. Cerna, C. Augier, R. Arnold, C. Vilela, R. Hodák, A. Basharina-Freshville, H. Ohsumi, C.S. Sutton, T. Le Noblet, Dominique Durand, X.R. Liu, Guillaume Lutter, D. Duchesneau, Hector Gomez, Fedor Šimkovic, Karol Lang, A. S. Barabash, Y. A. Ramachers, Igor Nemchenok, Michele Cascella, Jouni Suhonen, J. Mott, D.V. Filosofov, F. Xie, Karel Smolek, Frédéric Nowacki, Pavel P. Povinec, D. Štefánik, Ch. Marquet, P. Přidal, I. Stekl, X. Garrido, B. Soulé, F. Perrot, J.P. Cesar, A.A. Smolnikov, S. Torre, Yu. Shitov, V.I. Umatov, F. Mamedov, F. Piquemal, V.E. Kovalenko, F. Mauger, D. Boursette, G. Szklarz, G. Eurin, M. Macko, C. Macolino, C. Hugon, R. L. Flack, J. L. Reyss, R. B. Pahlka, S. Blondel, C. Patrick, A. A. Klimenko, M. Bongrand, V.B. Brudanin, I. Vanushin, L. Fajt, P. Guzowski, Y. Lemière, A. Chapon, L. Simard, A. Chopra, Z. J. Liptak, Ph. Hubert, S. Jullian, and S. I. Konovalov
- Subjects
Physics ,Particle physics ,Electron energy spectrum ,010308 nuclear & particles physics ,Detector ,General Physics and Astronomy ,chemistry.chemical_element ,Electron ,01 natural sciences ,7. Clean energy ,Neodymium ,Lepton number ,Beta decay ,Nuclear physics ,chemistry ,0103 physical sciences ,Underground laboratory ,010306 general physics - Abstract
We report the results of a first experimental search for lepton number violation by four units in the neutrinoless quadruple-β decay of Nd150 using a total exposure of 0.19 kg yr recorded with the NEMO-3 detector at the Modane Underground Laboratory. We find no evidence of this decay and set lower limits on the half-life in the range T1/2>(1.1–3.2)×1021 yr at the 90% C.L., depending on the model used for the kinematic distributions of the emitted electrons.
- Published
- 2017
- Full Text
- View/download PDF
25. Study of the GERDA Phase II background spectrum
- Author
-
V. I. Gurentsov, R. Kneißl, V. G. Egorov, D. Palioselitis, V. D'Andrea, M. Balata, E. Shevzik, L. Vanhoefer, L. B. Bezrukov, V. B. Brudanin, M. Allardt, Matthias Laubenstein, A. V. Veresnikova, M. Salathe, M. Junker, M. M. Wojcik, C. Schmitt, R. Mingazheva, BayarJon Paul Lubsandorzhiev, V. Kazalov, C. Cattadori, B. Schwingenheuer, J. Janicskó Csáthy, A. Domula, R. Brugnera, A. Kish, L. V. Inzhechik, A. Lubashevskiy, A. Kirsch, Oliver Schulz, V. V. Kuzminov, Alessandro Bettini, V. Wagner, I. Zhitnikov, W. Maneschg, E. A. Yanovich, Matteo Agostini, Alberto Pullia, M. Miloradovic, A. Wegmann, C. Bauer, Igor Nemchenok, V. I. Lebedev, A. Garfagnini, Manfred Lindner, L. Stanco, Stefano Riboldi, Bela Majorovits, D. Borowicz, A. Chernogorov, E. Medinaceli, Allen Caldwell, Laura Baudis, I.V. Kirpichnikov, A.A. Vasenko, O. Selivanenko, I. R. Barabanov, B. Lehnert, S. V. Zhukov, Hardy Simgen, E.V. Demidova, S. Belogurov, M. Misiaszek, H. Y. Liao, K. Panas, D. R. Zinatulina, K. N. Gusev, K. T. Knöpfle, C. Gooch, K. von Sturm, E. Bellotti, A.-K. Schütz, Stefan Schönert, A. Hegai, N. Di Marco, E. Doroshkevich, F. Salamida, Cinzia Sada, Giovanni Benato, J. Hakenmüller, Ivano Lippi, C. Wiesinger, Werner Hofmann, Mikael Hult, M. Shirchenko, G. Zuzel, T. Bode, R. Falkenstein, Jochen Schreiner, S. Hemmer, K. Pelczar, Guillaume Lutter, B. Schneider, A. M. Bakalyarov, P. Grabmayr, J. Jochum, T. Wester, A.A. Smolnikov, A. Lazzaro, Kai Zuber, V.N. Kornoukhov, O.I. Kochetov, S. T. Belyaev, A. M. Gangapshev, Th. Kihm, P. Moseev, Luciano Pandola, A. A. Klimenko, M. Heisel, N. Rumyantseva, C. Macolino, and N. Frodyma
- Subjects
Physics ,History ,Background spectrum ,Physics and Astronomy (all) ,Phase (waves) ,Nuclear Matrix ,Astrophysics ,Beta Decay ,Bolometers ,Beta Decay, Bolometers, Nuclear Matrix ,Computer Science Applications ,Education - Published
- 2017
26. Limits on uranium and thorium bulk content in GERDA Phase I detectors
- Author
-
V. N. Kornoukhov, K. Pelczar, Guillaume Lutter, A. M. Bakalyarov, K. Panas, R. Falkenstein, Jochen Schreiner, C. Schmitt, D. Palioselitis, V. G. Egorov, Allen Caldwell, K. T. Knöpfle, M. Salathe, T. Wester, O. Fedorova, V. I. Gurentsov, B. Lehnert, M. Balata, N. Frodyma, E. Medinaceli, L. Vanhoefer, K. von Sturm, T. Bode, A.A. Smolnikov, C. Cattadori, Kai Zuber, Laura Baudis, Cinzia Sada, Alessandro Bettini, O.I. Kochetov, Bayarto Lubsandorzhiev, A. Kish, R. Mingazheva, K. Freund, Marcin Wójcik, Stefano Riboldi, M. Junker, P. Grabmayr, H. Y. Liao, B. Schwingenheuer, Giovanni Benato, A.-K. Schütz, G. Zuzel, A. Hegai, S. T. Belyaev, V. D'Andrea, M. Misiaszek, C. Wiesinger, J. Jochum, A. M. Gangapshev, M. Shirchenko, V. V. Kazalov, E. V. Demidova, I. R. Barabanov, P. Moseev, Thomas Kihm, K. N. Gusev, D. R. Zinatulina, Luciano Pandola, V. I. Lebedev, A. A. Klimenko, S. V. Zhukov, M. Allardt, R. Brugnera, Stefan Schönert, L. B. Bezrukov, S. Belogurov, M. Heisel, Mikael Hult, E. Shevchik, V. V. Kuzminov, N. Rumyantseva, Matteo Agostini, Christian Bauer, A. Kirsch, A. Wegmann, Manfred Lindner, S. Hemmer, Igor Nemchenok, L. V. Inzhechik, A. Lubashevskiy, E. Doroshkevich, Bela Majorovits, W. Maneschg, A. Lazzaro, A. di Vacri, I. V. Kirpichnikov, Werner Hofmann, A. Domula, E. A. Yanovich, C. Macolino, M. Walter, B. Schneider, O. Selivanenko, R. Kneißl, Ivano Lippi, L. Stanco, V.B. Brudanin, N. Becerici-Schmidt, Hardy Simgen, E. Bellotti, D. Borowicz, M. Stepaniuk, J. Hakemüller, A. V. Veresnikova, J. Janicskó Csáthy, A. Chernogorov, I. Zhitnikov, F. Salamida, Oliver Schulz, Alberto Pullia, A. Garfagnini, Matthias Laubenstein, V. Wagner, A. A. Vasenko, Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), GERDA, and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Physics - Instrumentation and Detectors ,radiopurity ,Isotopes of germanium ,germanium: double-beta decay ,chemistry.chemical_element ,FOS: Physical sciences ,double beta decay ,Germanium ,Radiopurity ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,Uranium and thorium ,germanium detectors ,Nuclear physics ,Double beta decay ,0103 physical sciences ,thorium: admixture ,germanium: detector ,Nuclide ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Nuclear Experiment (nucl-ex) ,uranium and thorium bulk content ,010306 general physics ,Nuclear Experiment ,background: radioactivity ,Physics ,Range (particle radiation) ,010308 nuclear & particles physics ,uranium: admixture ,Thorium ,Astronomy and Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Uranium ,Germanium detectors ,Uranium and thorium bulk content ,chemistry ,radioactivity ,bulk content ,DOUBLE-BETA DECAY ,Decay chain ,GERDA - Abstract
Internal contaminations of $^{238}$U, $^{235}$U and $^{232}$Th in the bulk of high purity germanium detectors are potential backgrounds for experiments searching for neutrinoless double beta decay of $^{76}$Ge. The data from GERDA Phase~I have been analyzed for alpha events from the decay chain of these contaminations by looking for full decay chains and for time correlations between successive decays in the same detector. No candidate events for a full chain have been found. Upper limits on the activities in the range of a few nBq/kg for $^{226}$Ra, $^{227}$Ac and $^{228}$Th, the long-lived daughter nuclides of $^{238}$U, $^{235}$U and $^{232}$Th, respectively, have been derived. With these upper limits a background index in the energy region of interest from $^{226}$Ra and $^{228}$Th contamination is estimated which satisfies the prerequisites of a future ton scale germanium double beta decay experiment., Comment: 2 figures, 7 pages
- Published
- 2017
- Full Text
- View/download PDF
27. First results of GERDA Phase II and consistency with background models
- Author
-
R. Falkenstein, D. Palioselitis, Jochen Schreiner, O. Schulz, I. V. Kirpichnikov, M. Miloradovic, E. V. Demidova, O.I. Kochetov, D. Borowicz, S. T. Belyaev, A. M. Gangapshev, R. Mingazheva, N. Frodyma, V. I. Gurentsov, Alberto Pullia, V. G. Egorov, A. Garfagnini, M. Balata, B. Schwingenheuer, R. Brugnera, V. V. Kuzminov, Bayarto Lubsandorzhiev, R. Kneißl, E. Shevzik, J. Hakenmüller, M. Salathe, Matteo Agostini, V. I. Lebedev, L. Vanhoefer, K. Pelczar, K. N. Gusev, Th. Kihm, Matthias Laubenstein, A. M. Bakalyarov, Marcin Wójcik, E. Doroshkevich, L. V. Inzhechik, P. Grabmayr, Alessandro Bettini, A. Kirsch, Guillaume Lutter, T. Wester, P. Moseev, S. Hemmer, V. D'Andrea, L. B. Bezrukov, Luciano Pandola, J. Jochum, F. Salamida, W. Maneschg, K. T. Knöpfle, A.A. Smolnikov, A. Lazzaro, Christian Bauer, A. A. Klimenko, V.N. Kornoukhov, E. A. Yanovich, A. V. Veresnikova, S. Belogurov, K. Panas, C. Schmitt, A. Wegmann, Igor Nemchenok, Manfred Lindner, A. A. Vasenko, Kai Zuber, E. Medinaceli, M. Heisel, M. Allardt, N. Rumyantseva, C. Cattadori, A. Chernogorov, Bela Majorovits, C. Macolino, A. Lubashevskiy, B. Schneider, I. R. Barabanov, E. Bellotti, C. Gooch, A.-K. Schütz, S. V. Zhukov, A. Hegai, S. Schönert, B. Lehnert, D. R. Zinatulina, G. Zuzel, N. Di Marco, J. Janicskó Csáthy, O. Selivanenko, L. Stanco, V.B. Brudanin, Mikael Hult, Hardy Simgen, A. Kish, A. Domula, V. Wagner, I. Zhitnikov, Cinzia Sada, Giovanni Benato, M. Junker, Laura Baudis, H. Y. Liao, Werner Hofmann, Allen Caldwell, K. von Sturm, Ivano Lippi, V. Kazalov, Stefano Riboldi, M. Misiaszek, C. Wiesinger, M. Shirchenko, and T. Bode
- Subjects
Physics ,History ,Background spectrum ,Particle physics ,Physics and Astronomy (all) ,Consistency (statistics) ,Phase (waves) ,Liquid argon ,DECAY ,Computer Science Applications ,Education - Published
- 2017
28. The BiPo-3 detector
- Author
-
L. Simard, S. Blot, M. Bongrand, H. Gómez, A. Chopra, Z. J. Liptak, Jose Busto, P. Guzowski, Y. Lemière, Y. A. Ramachers, S. I. Konovalov, E. Chauveau, F. Perrot, B. Richards, V. V. Timkin, V.I. Umatov, X. Garrido, E. Birdsall, Pavel P. Povinec, Masaharu Nomachi, L. Fajt, Vit Vorobel, S. Torre, P. Přidal, V. Brudanin, G. Eurin, F. Mamedov, A.J. Caffrey, S. Söldner-Rembold, D. Boursette, Ruben Saakyan, O.I. Kochetov, C. Vilela, X.R. Liu, F. Piquemal, C. Hugon, Guillaume Lutter, J. Mott, M. Macko, Karol Lang, A. Jeremie, A. Žukauskas, Karol Holý, Yu. Shitov, S. De Capua, Michele Cascella, V. G. Egorov, A.A. Smolnikov, E. Rukhadze, P. Loaiza, S. Calvez, D. Waters, X. Sarazin, Joleen Pater, A. Smetana, J. J. Evans, D. Duchesneau, A. S. Barabash, Juergen Thomas, S. Blondel, I. Stekl, A. Huber, C. Cerna, D.V. Filosofov, V. I. Tretyak, V.E. Kovalenko, F. Mauger, G. Oliviéro, Fedor Šimkovic, R. L. Flack, Igor Nemchenok, B. Guillon, H. Ohsumi, M. Kauer, T. Le Noblet, R. B. Pahlka, Dominique Durand, Vl.I. Tretyak, F. Nova, S. Jullian, B. Morgan, A. A. Klimenko, C. L. Riddle, A. Remoto, A. Basharina-Freshville, R. Hodák, Karel Smolek, B. Soulé, Ch. Marquet, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire Souterrain de Modane (LSM - UMR 6417), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Laboratoire d'Annecy de Physique des Particules (LAPP/Laboratoire d'Annecy-le-Vieux de Physique des Particules), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Photomultiplier ,measurement methods ,chemistry.chemical_element ,Scintillator ,010403 inorganic & nuclear chemistry ,01 natural sciences ,Bismuth ,Nuclear physics ,thallium ,Optics ,Neutrino Ettore Majorana Observatory ,Double beta decay ,Double beta-decay detectors ,0103 physical sciences ,bismuth ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,background: radioactivity ,FOIL method ,scintillation counter ,Physics ,Radiation ,photomultiplier ,010308 nuclear & particles physics ,business.industry ,Detector ,double-beta decay ,0104 chemical sciences ,chemistry ,Scintillation counter ,admixture ,Low-radioactivity measurements ,business - Abstract
The BiPo-3 detector is a low radioactive detector dedicated to measuring ultra-low natural contaminations of 208Tl and 214Bi in thin materials, initially developed to measure the radiopurity of the double β decay source foils of the SuperNEMO experiment at the μBq/kg level. The BiPo-3 technique consists in installing the foil of interest between two thin ultra-radiopure scintillators coupled to low radioactive photomultipliers. The design and performances of the detector are presented. In this paper, the final results of the 208Tl and 214Bi activity measurements of the first enriched 82Se foils are reported for the first time, showing the capability of the detector to reach sensitivities in the range of some μBq/kg.
- Published
- 2017
- Full Text
- View/download PDF
29. MODELING OF KINEMATICS OF A PLASTIC SHAPING AT CALIBRATION OF A THIN-WALLED PRECISION PIPE SINKING
- Author
-
E. D. Chertov, M. A. Vasechkin, O. Iu. Davydov, and V. G. Egorov
- Subjects
pressure ,thin-wall pipe ,velocity field ,reduction ,stability ,TP368-456 ,mathematical model ,Food processing and manufacture - Abstract
Summary. The mathematical model of kinematics of a plastic shaping at the sinking of a thin-walled precision pipe applied to calibration of the ends of the unified elements of the pipeline of aircraft from titanic alloys and corrosion-resistant steel before assembly to the route by means of automatic argon-arc welding of ring joints is developed. For modeling, the power criterion of stability with use of kinematic possible fields of speeds is applied to receiving the top assessment of effort of deformation. The developed model of kinematics of a plastic current allows to receive power parameters of the main condition of process of calibration by sinking and can be used for the solution of a task on stability of process of deformation by results of comparison of power (power) parameters for the main (steady) and indignant states. Modeling is made in cylindrical system of coordinates by comparison of options of kinematic possible fields of the speeds of a current meeting a condition of incompressibility and kinematic regional conditions. The result of the modeling was selected discontinuous field of high-speed, in which the decrease outer radius (R) occurs only by increasing the thickness of the pipe wall (t). For this option the size of pressure of sinking had the smallest value, therefore the chosen field of speeds closely to the valid. It is established that with increase in a step of giving 1 at calibration by the multisector tool the demanded pressure of sinking of q decreases. At an identical step of giving 1 pipe with the smaller relative thickness of (t/r) needs to be calibrated the smaller pressure of sinking. With increase of a limit of fluidity at shift of material of pipe preparation pressure of sinking of (q) increases.
- Published
- 2014
30. Eight Papers on Differential Equations
- Author
-
V. G. Egorov, L. N. Ešukov, A. A. Kiselev, J. Kurzweil, O. A. Ladyženskaya, M. I. Višik, Ju. A. Volkov, I. Vrkoč, V. G. Egorov, L. N. Ešukov, A. A. Kiselev, J. Kurzweil, O. A. Ladyženskaya, M. I. Višik, Ju. A. Volkov, and I. Vrkoč
- Published
- 2016
31. Ten Papers on Functional Analysis and Measure Theory
- Author
-
L. M. Abramov, V. G. Egorov, I. C. Gohberg, R. Z. Has′minskiĭ, V. P. Il′in, M. A. Naĭmark, V. P. Palamodov, V. A. Rohlin, P. E. Sobolevskiĭ, L. M. Abramov, V. G. Egorov, I. C. Gohberg, R. Z. Has′minskiĭ, V. P. Il′in, M. A. Naĭmark, V. P. Palamodov, V. A. Rohlin, and P. E. Sobolevskiĭ
- Published
- 2016
32. Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay ofCa48with the NEMO-3 detector
- Author
-
F. Nova, X.R. Liu, B. Morgan, C. L. Riddle, A. Remoto, Hector Gomez, Jouni Suhonen, S. Calvez, S. V. Zhukov, M. Bongrand, Masaharu Nomachi, A. Basharina-Freshville, F. Piquemal, O.I. Kochetov, J. Baker, Karol Lang, D. Waters, V. I. Tretyak, R. Salazar, Vl.I. Tretyak, Jose Busto, V. G. Egorov, S. Blondel, V. V. Timkin, Y. A. Ramachers, X. Sarazin, E. Rukhadze, B. Richards, P. Guzowski, Y. Lemière, V. I. Lebedev, Guillaume Lutter, A. M. Bakalyarov, J. L. Reyss, J.P. Cesar, S. Torre, F. Mamedov, V.E. Kovalenko, F. Mauger, Frédéric Nowacki, A. Chapon, Fedor Šimkovic, G. Szklarz, R. Arnold, Igor Nemchenok, A. Smetana, A. Chopra, Z. J. Liptak, C. Hugon, V. B. Brudanin, J. Mott, P. Loaiza, Michele Cascella, R. Saakyan, G. Eurin, F. Perrot, V. I. Umatov, R. B. Pahlka, I. Stekl, S. Söldner-Rembold, A. S. Barabash, S. Blot, D.V. Filosofov, L. Simard, Ch. Marquet, N.I. Rukhadze, A. Žukauskas, Ph. Hubert, Vit Vorobel, E. Chauveau, A.A. Smolnikov, R. L. Flack, J. J. Evans, A. A. Klimenko, S. Jullian, D. Lalanne, Yu. Shitov, A. Huber, J. C. Thomas, C. Cerna, Lukas Fajt, I. Vanushin, Pavel P. Povinec, C.S. Sutton, H. Ohsumi, T. Le Noblet, Dominique Durand, S. I. Konovalov, P. Přidal, A. J. Caffrey, R. Hodák, Karel Smolek, X. Garrido, B. Soulé, D. Duchesneau, C. Vilela, B. Guillon, and C. Augier
- Subjects
Physics ,Particle physics ,010308 nuclear & particles physics ,Half-life ,01 natural sciences ,Lower limit ,Nuclear physics ,MAJORANA ,Double beta decay ,0103 physical sciences ,Underground laboratory ,Neutrino ,010306 general physics ,Majoron - Abstract
The NEMO-3 experiment at the Modane Underground Laboratory has investigated the double-$\beta$ decay of $^{48}{\rm Ca}$. Using $5.25$ yr of data recorded with a $6.99\,{\rm g}$ sample of $^{48}{\rm Ca}$, approximately $150$ double-$\beta$ decay candidate events have been selected with a signal-to-background ratio greater than $3$. The half-life for the two-neutrino double-$\beta$ decay of $^{48}{\rm Ca}$ has been measured to be $T^{2\nu}_{1/2}\,=\,[6.4\, ^{+0.7}_{-0.6}{\rm (stat.)} \, ^{+1.2}_{-0.9}{\rm (syst.)}] \times 10^{19}\,{\rm yr}$. A search for neutrinoless double-$\beta$ decay of $^{48}{\rm Ca}$ yields a null result and a corresponding lower limit on the half-life is found to be $T^{0\nu}_{1/2} > 2.0 \times 10^{22}\,{\rm yr}$ at $90\%$ confidence level, translating into an upper limit on the effective Majorana neutrino mass of $ < 6.0 - 26$ ${\rm eV}$, with the range reflecting different nuclear matrix element calculations. Limits are also set on models involving Majoron emission and right-handed currents.
- Published
- 2016
- Full Text
- View/download PDF
33. Search for double beta decay of 106Cd
- Author
-
V. B. Brudanin, F. Šimkovic, Yu. Shitov, V. G. Egorov, A. A. Klimenko, N. I. Rukhadze, P. Čhermák, I. Štekl, V. V. Timkin, A. Kovalík, and Ch. Briançon
- Subjects
Physics ,chemistry ,Spectrometer ,Double beta decay ,Excited state ,Hadron ,Underground laboratory ,Analytical chemistry ,General Physics and Astronomy ,chemistry.chemical_element ,Germanium ,Atomic physics ,Ground state - Abstract
A search for the β+β+, β+/EC, and EC/EC decays of 106Cd was performed at the Modane Underground Laboratory (France) located at a depth of 4800 m w.e. using a TGV-2 multidetector germanium spectrometer. A preliminary evaluation is performed of the experimental data accumulated during the measurements (12 900 h) of ∼13.6 g of 106Cd (with an enrichment of 75%) and the spectrometer background without samples and with samples of natural Cd. New limits (at a 90% confidence level) of half-lives are obtained: T 1/2 ⩾ 1.7 × 1020 yr and T 1/2 ⩾ 1.6 × 1020 yr for the 0νEC/EC resonant decay of 106Cd to the 2741 keV and 2718 keV excited states of the daughter nucleus 106Pd and T 1/2 ⩾ 4.2 × 1020 yr for the 2νEC/EC decay to the ground state of 106Pd (0+ → 0+, g.s.). The limits for other branches of the double beta decay of 106Cd with transitions to the ground and excited states of 106Pd are improved.
- Published
- 2011
- Full Text
- View/download PDF
34. S3-prototype of reactor antineutrino detector
- Author
-
V. B. Brudanin, Lukas Fajt, I. Zhitnikov, M. Špavorová, Zdeněk Kruliš, P. Pridal, Petr Masek, V. G. Egorov, E. Rukhadze, J. Vlasek, H. Burešová, Danuše Michálková, S. Kazartsev, M. Macko, Tomas Slavicek, I. Stekl, V. Belov, M. Fomina, Karel Smolek, E. Shevchik, and R. Hodák
- Subjects
Physics ,Flammable liquid ,Applied physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Nuclear engineering ,Detector ,Scintillator ,01 natural sciences ,Particle detector ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Neutrino detector ,chemistry ,0103 physical sciences ,Measuring instrument ,High Energy Physics::Experiment ,Neutrino ,Instrumentation ,Mathematical Physics - Abstract
In recent years, much attention has been focused on neutrino research because it can shed new light on greatest mysteries in physics. A new experiment devoted to detection and investigation of reactor antineutrinos is being performed at the Institute of Experimental and Applied Physics, Czech Technical University in Prague using a highly segmented scintillating detector S3. This detector is polystyrene based and does not contain any dangerous or flammable materials and is absolutely safe to be placed in the close vicinity of the reactor. The most important feature of plastic scintillators for this experiment is the amount of photoelectrons per deposited energy, which defines the final energy resolution of the detector and a lot of effort has been put into improvement of detector element overall quality. The detector has been constructed as a result of these optimization experiments.
- Published
- 2018
- Full Text
- View/download PDF
35. Tightness monitoring of SF6 gas equipment
- Author
-
Yu. Ya. Bykovets, K. I. Seryakov, Yu. V. Toropchin, V. S. Chemeris, and V. G. Egorov
- Subjects
Engineering ,business.industry ,Reading (process) ,media_common.quotation_subject ,Electronic engineering ,Mechanical engineering ,Electrical and Electronic Engineering ,business ,media_common - Abstract
The influence of the thermal processes inside of SF6 gas-insulated equipment for the error of reading the gas-density sensor was examined. An analysis of these thermal processes and the fulfilled experiments enabled us estimate the possible errors of the reading of the gas-density sensor. Algorithms for calculating the errors in reading the gas-density sensor were suggested that use modern processing technology. An analysis of this calculation method was carried out for different conditions.
- Published
- 2010
- Full Text
- View/download PDF
36. Search for double beta decay of 106Cd in the TGV-2 experiment
- Author
-
Ts. Vylov, Yu. Shitov, P. Čermák, Ch. Briançon, V. I. Lebedev, A. M. Bakalyarov, I. Štekl, D. R. Zinatulina, S. V. Zhukov, A. A. Klimenko, V. V. Timkin, A. Kovalík, V. G. Egorov, V. B. Brudanin, and N. I. Rukhadze
- Subjects
Physics ,Spectrometer ,010308 nuclear & particles physics ,Hadron ,General Physics and Astronomy ,Water equivalent ,01 natural sciences ,Nuclear physics ,Excited state ,Double beta decay ,0103 physical sciences ,Underground laboratory ,Atomic physics ,010306 general physics ,Ground state - Abstract
An investigation of double beta decay (β+β+, β+/EC, EC/EC) of 106Cd was performed at the Modane underground laboratory (at a water equivalent depth of 4800 m) using a TGV-2 spectrometer with 32 detectors. Evaluation of the experimental data accumulated over 12 400 h of measuring ∼13.6 g of 106Cd with an enrichment of 75% was performed. New limits (at a confidence level of 90%) on the half-lives of the 0νEC/EC resonant decay of 106Cd to the 2741 keV excited state of 106Pd − T1/2 ≥ 1.5 × 1020 y and on 2νEC/EC decay to the ground state of 106Pd (0+ → 0+, g.s.) − T1/2 ≥ 3.9 × 1020 y were obtained. The limits of the 2νEC/EC decay of 106Cd to the 2+, 512 keV and 01+, 1334 keV excited states of 106Pd and 2νβ+β+- and the 2νβ+EC decays of 106Cd to the ground and excited states of 106Pd were improved.
- Published
- 2010
- Full Text
- View/download PDF
37. Negative-muon capture in 150Sm
- Author
-
D. R. Zinatulina, Ch. Briançon, V. I. Fominykh, C. Petitjean, R. V. Vasilyev, I. Yutlandov, V.G. Chumin, M. Shirchenko, V. B. Brudanin, K.Ya. Gromov, and V. G. Egorov
- Subjects
Physics ,Radionuclide ,Muon ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,General Physics and Astronomy ,Spectral line ,Muon capture ,Nuclear physics ,Yield (chemistry) ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Atomic physics ,Nuclear Experiment - Abstract
The energy and time spectra of γ rays emitted during negative-muon capture in 150Sm were studied. The total muon lifetime in 150Sm was measured. The yields of several radioactive isotopes in this reaction were determined. The partial γ-ray yield upon muon capture by a 150Sm nucleus were measured.
- Published
- 2010
- Full Text
- View/download PDF
38. Measurements of the Reactor Antineutrino with Solid State Scintillation Detector
- Author
-
I. G. Alekseev, A.G. Olshevsky, A.V. Salamatin, V. Belov, Yu. Shitov, V. M. Nesterov, V. Rusinov, M. Shirchenko, N. Pogorelov, E. Tarkovsky, D. Ponomarev, E. Samigullin, Ye. Shevchik, I. Zhitnikov, I. Tikhomirov, S. Kazartsev, A. Starostin, M. Fomina, I. V. Machikhiliyan, D. R. Zinatulina, J. Vlasek, N. Rumyantseva, N. Skrobova, V. G. Egorov, A. S. Kobyakin, D.V. Filosofov, D. Medvedev, V. B. Brudanin, D. N. Svirida, A. A. Kuznetsov, Z. Hons, I. Rozova, and M. Danilov
- Subjects
Semileptonic decay ,Physics ,Nuclear physics ,Sterile neutrino ,Photomultiplier ,Muon ,Inverse beta decay ,Scintillation counter ,Scintillator ,Neutrino oscillation - Abstract
Measurements of reactor antineutrino play an important role in the efforts at the frontier of the modern physics. The DANSS collaboration presents preliminary results of a one year run with a cubic meter solid state detector placed below 3.1 GW industrial light water reactor. The experiment is sensitive to sterile neutrino in the most interesting region of mixing parameter space. 2500 scintillation strips of the sensitive volume of the detector have multilayer passive shielding of copper, lead and borated polyethylene and active muon veto. Detector position below the reactor gives an advantage of overburden about 50 m of water equivalent providing factor of six in cosmic muon suppression and eliminating fast neutrons.The detector is placed on a vertically movable platform which allows to change the distance to the reactor core center in the range 10.7-12.7 m within a few minutes. The strips are read out individually by SiPMs and in groups of 50 by PMTs. 5000 inverse beta-decay events per day are collected in the fiducial volume, which is 78% of the whole detector, at the position closest to the reactor. Overburden, active veto and good segmentation of the detector result in an excellent signal to background ratio. The talk is dedicated to the data analysis and preliminary results. The experiment status is also presented.
- Published
- 2018
- Full Text
- View/download PDF
39. New search for 0νEC/EC and 2νEC/EC decay of 106Cd
- Author
-
Ts. Vylov, N. I. Rukhadze, Yu. Shitov, A. A. Klimenko, D. R. Zinatulina, P. Čermák, S. V. Zhukov, A. M. Bakalyarov, Ch. Briançon, V. V. Timkin, I. Štekl, V. I. Lebedev, V. B. Brudanin, V. G. Egorov, and A. Kovalík
- Subjects
Physics ,Spectrometer ,Excited state ,Hadron ,Analytical chemistry ,General Physics and Astronomy ,Atomic physics ,Ground state - Abstract
The studies aimed at decreasing the background of the TGV-2 spectrometer have led to constructive changes in the cryostat and increased the sensitivity of the 32-detector spectrometer. New search for 0νEC/EC, 2νEC/EC) decays of 106Cd was started with ∼13.6 g of 106Cd with enrichment of 75%. The evaluation of the experimental data accumulated for 4800 h was performed. Limits (at 90% CL) on the half-lives of 0νEC/EC resonant decay of 106Cd to the 2741 keV excited state of 106Pd (T1/2 ≥ 6.5 × 1019 y) and on t 2νEC/EC decay to the ground state of 106Pd (0+ → 0+, g.s.) (T1/2 ≥ 1.7 × 1020 y) were obtained. The limits on the other branches of 106Cd decay—2νEC/EC decay to the 2+, 512 keV and 01+, 1334 keV excited states of 106Pd and 2νβ+β+ and 2νβ+EC decays of 106Cd to the ground and excited states of 106Pd were improved.
- Published
- 2009
- Full Text
- View/download PDF
40. Investigation of the 2νEC/EC Decay of 106Cd
- Author
-
N. I. Rukhadze, Ts. Vylov, A.V. Salamatin, P. Čermák, V. G. Egorov, V. B. Brudanin, K. N. Gusev, I. Štekl, V. V. Timkin, A. Kovalík, P. Beneš, Ch. Briançon, V.E. Kovalenko, and A. A. Klimenko
- Subjects
Physics ,chemistry ,Excited state ,Hadron ,Underground laboratory ,Analytical chemistry ,General Physics and Astronomy ,Total measurement ,chemistry.chemical_element ,Germanium ,Atomic physics ,Ground state - Abstract
Search for the β+β+, β+ EC, and EC/EC modes of the 106Cd decay was carried out with the TGV-2 (Telescope Germanium Vertical) low-background multidetector spectrometer installed at the Modane underground laboratory (4800 m w.e.). The measured foil samples ∼50 μm thick and 52 mm in diameter were placed between the entrance windows of the neighboring detectors inside the cryostat. The total measurement time for 10 g of 106Cd enriched to 75% was 8687 h. New limits (at the 90% confidence level, CL) were obtained for the 106Cd half-lives against various branches of the decay to the ground state 0+ and excited states 2+ of the 106Pd daughter nucleus. They are T 1/2(2νβ+β+) ≥ 6.0 × 1019 y, and T 1/2(2νβ+ EC) ≥ 5.9 × 1019 y, and T 1/2(2νEC/EC) ≥ 3.0 × 1020 y for the transitions to the 0+ ground state of 106Pd; T 1/2(2νβ+β+) ≥ 5.7 × 1019 y, T 1/2(2νβ+ EC) ≥ 5.9 × 1019 y, and T 1/2(2νEC/EC) ≥ 4.2 × 1019 y for the transitions to the 2+, 512-keV excited state of 106Pd; and T 1/2(2νEC/EC) ≥ 3.1 × 1019 y for the transition to the 0 1 + , 1334-keV excited state of 106Pd.
- Published
- 2008
- Full Text
- View/download PDF
41. Muon capture rates in Se and Cd isotopes
- Author
-
V. I. Fominykh, Ch. Briançon, V. G. Egorov, D. R. Zinatulina, M. Shirchenko, K.Ya. Gromov, I. Yutlandov, C. Petitjean, V.G. Chumin, and V. B. Brudanin
- Subjects
Nuclear physics ,Physics ,Muon ,Isotope ,Excited state ,Hadron ,General Physics and Astronomy ,High Energy Physics::Experiment ,Nuclear Experiment ,Hpge detector ,Spectral line ,Muon capture - Abstract
Energy and time spectra of γ rays following nuclear capture of negative muons in natural Se and Cd and isotopically enriched 76Se and 106Cd targets have been measured with HPGe detectors. Total muon lifetimes in Se and Cd isotopes and partial μ capture rates to excited levels of 76As and 106Ag are obtained. These results are necessary for calculation of nuclear matrix elements of the 2β decay of 76Ge and 106Cd respectively.
- Published
- 2008
- Full Text
- View/download PDF
42. First result for the neutrino magnetic moment from measurements with the GEMMA spectrometer
- Author
-
A. S. Starostin, M. G. Gavrilov, E. V. Demidova, Ts. Vylov, M. Shirchenko, V.B. Brudanin, A. G. Beda, and V. G. Egorov
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Spectrometer ,Magnetic moment ,Scattering ,Flux ,Atomic and Molecular Physics, and Optics ,Bohr model ,Semiconductor detector ,symbols.namesake ,Nuclear reactor core ,symbols ,Neutrino - Abstract
The first result of the neutrino magnetic moment measurement at the Kalininskaya Nuclear Power Plant (KNPP) with the GEMMA spectrometer is presented. An antineutrino-electron scattering is investigated. A high-purity germanium detector of 1.5 kg placed 13.9 m away from the 3 GW reactor core is used in the spectrometer. The antineutrino flux is $2.73\times 10^{13} \nu_e / cm^2 / s$. The differential method is used to extract the $\nu$-e electromagnetic scattering events. The scattered electron spectra taken in 6200 and 2064 hours for the reactor ON and OFF periods are compared. The upper limit for the neutrino magnetic moment $\mu_\nu < 5.8\times 10^{-11}$ Bohr magnetons at 90{%} CL is derived from the data processing.
- Published
- 2007
- Full Text
- View/download PDF
43. Search for double beta decay of $^{106}$Cd in the TGV-2 experiment
- Author
-
S. V. Rozov, N. I. Rukhadze, E. A. Yakushev, F. Piquemal, V. V. Timkin, V. B. Brudanin, P. Kouba, Fedor Šimkovic, A. Kovalík, A. A. Klimenko, V. G. Egorov, E. Rukhadze, A.V. Salamatin, Yu. Shitov, I. Stekl, Laboratoire Souterrain de Modane (LSM - UMR 6417), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Physics ,History ,Spectrometer ,010308 nuclear & particles physics ,Analytical chemistry ,Resonance ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Beta decay ,Particle detector ,Computer Science Applications ,Education ,Semiconductor detector ,Nuclear physics ,Isotopes of cadmium ,Double beta decay ,0103 physical sciences ,010306 general physics ,Radioactive decay - Abstract
International audience; A new experimental run of searching for double beta decay of (106)Cd was performed at the Modane underground laboratory (LSM, France, 4800 m w.e.) using the TGV-2 spectrometer, consisting of 32 planar type HPGe detectors with a total sensitive volume of ~400 cm(3). 16 foils of (106)Cd with an enrichment of 99.57% and a total mass of ~ 23.2 g were inserted between the entrance windows of face-to-face detectors. The limit on 2vEC/EC decay of (106)Cd - T(1/2) > 3.7 × 10(20) y at 90% C.F was obtained from the preliminary calculation of experimental data accumulated for 8198 h of measurement. The limits on the resonance OvEC/EC decay of (106)Cd were obtained from the measurement of ~23.2 g of (106)Cd with the low-background HPGe spectrometer Obelix lasted 395 h -T(1/2) (KF, 2741 keV) > 0.9 × 10(20) y and T(1/2) (KK, 2718 keV) > 1.4 × 10(20) y at 90% C.L.
- Published
- 2015
- Full Text
- View/download PDF
44. New search for double electron capture in Cd-106 decay with the TGV-2 spectrometer
- Author
-
Lukas Fajt, V. B. Brudanin, V. G. Egorov, E. Rukhadze, A.V. Salamatin, J. M. Jose, R. Hodák, S. V. Rosov, Yu. Shitov, A. A. Klimenko, N. I. Rukhadze, A. Kovalík, Ch. Briançon, V. V. Timkin, M. Špavorova, E. A. Yakushev, F. Šimkovic, I. Stekl, CSNSM SNO, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[PHYS]Physics [physics] ,Nuclear and High Energy Physics ,Isotope ,Spectrometer ,010308 nuclear & particles physics ,Stable isotope ratio ,Electron capture ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,7. Clean energy ,Atomic and Molecular Physics, and Optics ,Nuclear physics ,Double beta decay ,Isotopes of cadmium ,0103 physical sciences ,Gamma spectroscopy ,DOUBLE-BETA DECAY ,010306 general physics ,Radioactive decay - Abstract
International audience; A new experiment devoted to searches for double electron capture in Cd-106 decay is being performed at the Modane underground laboratory (4800 mwe) with the 32-detector TGV-2 spectrometer. The limit T (1/2)(2 nu EC/EC) > 2.0x10(20) yr at a 90%confidence level (C.L.) was obtained from a preliminary analysis of data obtained over 2250 h of measurements with about 23.2 g sample enriched in the isotope Cd-106 to 99.57%. The limits T (1/2)(KL, 2741 keV) > 0.9 x 10(20) yr and T (1/2)(KK, 2718 keV) a parts per thousand << 1.4 x 10(20) yr at a 90% C.L. on the neutrinoless decay of Cd-106 were obtained from measurements performed with the Obelix low-background spectrometer from high-purity germanium (HPGe spectrometer) for a sample of mass about 23.2 g enriched in the isotope Cd-106.
- Published
- 2015
- Full Text
- View/download PDF
45. Double electron capture of 106Cd in the TGV-2 experiment
- Author
-
A.V. Salamatin, N. I. Rukhadze, V. B. Brudanin, P. Kouba, Fedor Šimkovic, E. A. Yakushev, V. G. Egorov, V. V. Timkin, E. Rukhadze, F. Rychnovský, Lukas Fajt, Ch. Briançon, I. Stekl, R. Hodák, Yu. Shitov, A. Kovalík, A. A. Klimenko, F. Piquemal, S. V. Rozov, CSNSM SNO, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), and Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Physics ,Electron spectrometer ,Spectrometer ,010308 nuclear & particles physics ,Electron capture ,double beta decay ,Resonance ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,7. Clean energy ,01 natural sciences ,Beta decay ,Nuclear physics ,neutrino ,Double beta decay ,Isotopes of cadmium ,0103 physical sciences ,010306 general physics ,Radioactive decay - Abstract
International audience; A new experimental run of searching for EC/EC decay of Cd-106 was performed at the Modane underground laboratory (4800 m w.e.) using the TGV-2 spectrometer and similar to 23.2 g Cd-106 with enrichment of 99.57%. The limit on 2 nu EC/EC decay of Cd-106 -T-1/2(2 nu EC/EC) > 3.1x10(20) y, at 90% C. L was obtained from the preliminary calculation of experimental data accumulated for 7018 h of measurement. The limits on the resonance neutrino-less double electron capture decay of Cd-106 were obtained from the measurement of similar to 23.2 g of Cd-106 with the low-background HPGe spectrometer OBELIX lasted 395 h -T-1/2(KL, 2741 keV) > 0.9x10(20) y and T-1/2(KK, 2718 keV) > 1.4x10(20) y at 90% C.L.
- Published
- 2015
- Full Text
- View/download PDF
46. Limit on Neutrinoless Double Beta Decay of 76Ge by GERDA
- Author
-
A. Kirsch, W. Maneschg, E. A. Yanovich, Stefano Nisi, P. Zavarise, Josef Jochum, A. Domula, V. Wagner, J. Janicskó Csáthy, M. Salathe, Manfred Lindner, A. A. Vasenko, V. I. Gurentsov, I. Zhitnikov, L. Stanco, B. Lehnert, V.B. Brudanin, O. Volynets, Hardy Simgen, A. D. Ferella, M. Barabè Heider, D. R. Zinatulina, Ivano Lippi, Bayarto Lubsandorzhiev, A. Hegai, O.I. Kochetov, A. Wegmann, A. Lubashevskiy, Igor Nemchenok, A. Garfagnini, Claudio Gotti, S. T. Belyaev, C. Bauer, C. Macolino, A. Chernogorov, Allen Caldwell, Bela Majorovits, L. V. Inzhechik, A. M. Gangapshev, Stefano Riboldi, C.O’. Shaughnessy, P. Grabmayr, R. Brugnera, V. V. Kuzminov, Matteo Agostini, K. Freund, M. Misiaszek, V. I. Lebedev, W. Hampel, E. V. Demidova, K. K. Guthikonda, V. G. Egorov, I. V. Kirpichnikov, B. Schwingenheuer, Mikael Hult, M. Shirchenko, M. Allardt, K. von Sturm, M. Balata, H. Strecker, C. A. Ur, G. Heusser, Alessandro Bettini, K. N. Gusev, S. Belogurov, N. Frodyma, N. Barros, E. Andreotti, T. Bode, A. Lazzaro, Werner Hofmann, K. T. Knöpfle, G. Zuzel, O. Schulz, S. Schönert, S. Hemmer, T. Wester, A.A. Smolnikov, C. Cattadori, Kai Zuber, Laura Baudis, L. B. Bezrukov, E. Shevchik, H. Y. Liao, G. Pessina, M. M. Wojcik, A. A. Machado, F. Cossavella, D. Budjáš, E. Bellotti, M. Tarka, R. Falkenstein, Thomas Kihm, Jochen Schreiner, C. Schmitt, V. N. Kornoukhov, K. Pelczar, Guillaume Lutter, A. M. Bakalyarov, I. R. Barabanov, M. Walter, S. V. Zhukov, M. Laubenstein, Luciano Pandola, N. Becerici-Schmidt, A. A. Klimenko, M. Heisel, N. Rumyantseva, A. Pullia, Cinzia Sada, Giovanni Benato, and M. Junker
- Subjects
Physics ,Nuclear physics ,Particle physics ,Isotope ,Double beta decay ,SEARCH ,double beta decay ,Limit (mathematics) ,Physics and Astronomy(all) ,0-NU-BETA-BETA DECAY ,Semiconductor detector - Abstract
The Gerda experiment at the Laboratori Nazionali del Gran Sasso in Italy uses germanium detectors made from material with an enriched 76Ge isotope fraction to search for neutrinoless double beta decay of this nucleus. Applying a blind analysis we find no signal after an exposure of 21.6 kg·yr and a background of about 0.01 cts/(keV·kg·yr). A half-life limit of Tov1/2> 2.1 · 1025 yr (90% C.L.) is extracted. The previous claim of a signal for 76Ge is excluded with 99% probability in a model independent way.
- Published
- 2015
47. Status of the Germanium Detector Array (GERDA) in the search of neutrinoless ββ decays of 76Ge at LNGS
- Author
-
K. N. Gusev, S. Katulina, K. T. Knöpfle, P. Peiffer, V. N. Kornoukhov, A. V. Tikhomirov, I. Abt, V. G. Egorov, I. V. Kirpichnikov, Gerd Marissens, F. Stelzer, A. M. Bakalyarov, O.I. Kochetov, O. Chkvorets, M. Altmann, W. Hampel, E. V. Demidova, M. Junker, Josef Jochum, F. Zocca, D. Weißhaar, V. I. Lebedev, E. Farnea, Jochen Schreiner, V. I. Gurentsov, I. R. Barabanov, S. Scholl, M. M. Wojcik, G. Heusser, S. V. Zhukov, Kevin Kröninger, M. Bauer, S. T. Belyaev, A. M. Gangapshev, X. Liu, S. Belogurov, A.A. Smolnikov, G. Zuzel, E. Bellotti, C. Cattadori, C. R. Alvarez, V. P. Bolotsky, J. Kiko, L. B. Bezrukov, A. di Vacri, L. V. Inzhechik, Werner Hofmann, G. Y. Grigoriev, J. Yurkowski, J. Eberth, Igor Nemchenok, Allen Caldwell, V. B. Brudanin, Luciano Pandola, Bela Majorovits, Mikael Hult, M. Knapp, U. Schwan, A. A. Klimenko, S. Schönert, C. Bauer, E. A. Yanovich, M. Heisel, V. G. Sandukovsky, S. I. Vasiliev, B. Schwingenheuer, C. Tomei, J. Gasparro, M. Laubenstein, C. A. Ur, M. V. Chirchenko, A. Pullia, Hardy Simgen, V. V. Kuzminov, P. Grabmayr, A. A. Vasenko, and Alessandro Bettini
- Subjects
Nuclear physics ,Physics ,Nuclear and High Energy Physics ,chemistry ,Double beta decay ,Detector ,chemistry.chemical_element ,Germanium ,Atomic and Molecular Physics, and Optics ,Radioactive decay ,Semiconductor detector ,Diode - Abstract
The Germanium Detector Array (GERDA) in the search for neutrinoless ββ decays of 76Ge at LNGS will operate bare germanium diodes enriched in 76Ge in an (optional active) cryogenic fluid shield to investigate neutrinoless ββ decay with a sensitivity of T 1/2 > 2 × 1026 yr after an exposure of 100 kg yr. Recent progress includes the installation of the first underground infrastructures at Gran Sasso, the completion of the enrichment of 37.5 kg of germanium material for detector construction, prototyping of low-mass detector support and contacts, and front-end and DAQ electronics, as well as the preparation for construction of the cryogenic vessel and water tank.
- Published
- 2006
- Full Text
- View/download PDF
48. Search for double electron capture of 106Cd
- Author
-
P. Čermák, A. Kovalík, Petr Beneš, A. A. Klimenko, Ch. Briançon, V. V. Timkin, N. I. Rukhadze, V. G. Egorov, I. Stekl, K. N. Gusev, V.B. Brudanin, F.A. Danevich, A.V. Salamatin, V. E. Kovalenko, V.I. Tretyak, and Ts. Vylov
- Subjects
Physics ,Nuclear and High Energy Physics ,Crystallography ,Theoretical physics ,Electron capture ,Underground laboratory ,Atomic and Molecular Physics, and Optics - Abstract
A search for double electron capture of 106Cd was performed at the Modane Underground Laboratory (4800 m w.e.) using a low-background and high-sensitivity multidetector spectrometer TGV-2 (Telescope Germanium Vertical). New limits on β+/EC, EC/EC decays of 106Cd were obtained from preliminary calculations of experimental data accumulated for 4800 h of measurement of 10 g of 106Cd with enrichment of 75%. They are \(T_{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}^{2\nu \beta ^ + EC} \) > 9.1 × 1018 yr, \(T_{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}^{2\nu {{EC} \mathord{\left/ {\vphantom {{EC} {EC}}} \right. \kern-\nulldelimiterspace} {EC}}} \) > 1.9 × 1019 yr for transitions to the first 2+, 511.9 keV excited state of 106Pd, and \(T_{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}^{2\nu \beta ^ + EC} \) > 1.3 × 1019 yr, \(T_{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}^{2\nu {{EC} \mathord{\left/ {\vphantom {{EC} {EC}}} \right. \kern-\nulldelimiterspace} {EC}}} \) > 6.2 × 1019 yr for transitions to the ground 0+ state of 106Pd. All limits are given at 90% C.L.
- Published
- 2006
- Full Text
- View/download PDF
49. Status of the experiment on the measurement of the neutrino magnetic moment with the spectrometer GEMMA
- Author
-
V. G. Egorov, A. Starostin, A. G. Beda, V. B. Brudanin, E. V. Demidova, M. G. Gavrilov, V. N. Kornoukhov, and C. Vylov
- Subjects
Nuclear physics ,Physics ,Nuclear and High Energy Physics ,Particle physics ,Spectrometer ,Magnetic moment ,Neutrino ,Atomic and Molecular Physics, and Optics ,Gemma - Abstract
The investigation of the background structure of the spectrometer GEMMA was carried out in a low-background laboratory in ITEP. GEMMA is destined for measurement of the neutrino magnetic moment near the core of a nuclear power plant (NPP) reactor. The results of the investigation in ITEP and measurement of the background in the experimental hall at the Kalininskaya NPP proved that GEMMA is ready for the start of the experiment at the reactor. Now the preparation of the experimental hall for the measurement is completed and an assembling of the setup is in progress.
- Published
- 2004
- Full Text
- View/download PDF
50. The majorana neutrinoless double-beta decay experiment
- Author
-
C. E. Aalseth, D. Anderson, R. Arthur, F. T. Avignone, C. Baktash, T. Ball, A. S. Barabash, R. L. Brodzinski, V. B. Brudanin, W. Bugg, A. E. Champagne, Y. -D. Chan, T. V. Cianciolo, J. I. Collar, R. W. Creswick, P. J. Doe, G. Dunham, S. Easterday, Yu. V. Efremenko, V. G. Egorov, H. Ejiri, S. R. Elliott, J. Ely, P. Fallon, H. A. Farach, R. J. Gaitskell, V. Gehman, R. Grzywacz, R. Hazma, H. Hime, T. Hossbach, D. Jordan, K. Kazkaz, J. Kephart, G. S. King, O. I. Kochetov, S. I. Konovalov, R. T. Kouzes, K. T. Lesko, A. O. Macchiavelli, H. S. Miley, G. B. Mills, M. Nomachi, J. M. Palms, W. K. Pitts, A. W. P. Poon, D. C. Radford, J. H. Reeves, R. G. H. Robertson, R. M. Rohm, K. Rykaczewski, K. Saborov, V. G. Sandukovsky, C. Shawley, V. N. Stekhanov, W. Tornow, R. G. van de Water, K. Vetter, R. A. Warner, J. Webb, J. F. Wilkerson, J. M. Wouters, A. R. Young, and V. I. Yumatov
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Detector ,FOS: Physical sciences ,Atomic and Molecular Physics, and Optics ,High Energy Physics - Experiment ,Running time ,High Energy Physics - Experiment (hep-ex) ,MAJORANA ,Double beta decay ,Pulse shape analysis ,Granularity ,Sensitivity (control systems) ,Electron neutrino - Abstract
The proposed Majorana double-beta decay experiment is based on an array of segmented intrinsic Ge detectors with a total mass of 500 kg of Ge isotopically enriched to 86% in 76Ge. A discussion is given of background reduction by: material selection, detector segmentation, pulse shape analysis, and electro-formation of copper parts and granularity. Predictions of the experimental sensitivity are given. For an experimental running time of 10 years over the construction and operation of Majorana, a half-life sensitivity of ~4x10^27 y (neutrinoless) is predicted. This corresponds to an effective Majorana mass of the electron neutrino of ~0.03-0.04 eV, according to recent QRPA and RQRPA matrix element calculations., Comment: 10 pages, 7 figures
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.