60 results on '"Vincent Collière"'
Search Results
2. Synthesis of TiO2/SBA-15 Nanocomposites by Hydrolysis of Organometallic Ti Precursors for Photocatalytic NO Abatement
- Author
-
Ons El Atti, Julie Hot, Katia Fajerwerg, Christian Lorber, Bénédicte Lebeau, Andrey Ryzhikov, Myrtil Kahn, Vincent Collière, Yannick Coppel, Nicolas Ratel-Ramond, Philippe Ménini, and Pierre Fau
- Subjects
mesoporous silica ,titanium(III) amidinate precursor ,TiO2 nanoparticles ,photocatalysis ,NO degradation ,air quality ,Inorganic chemistry ,QD146-197 - Abstract
The development of advanced photocatalysts for air pollution removal is essential to improve indoor air quality. TiO2/mesoporous silica SBA-15 nanocomposites were synthesized using an organometallic decoration method, which leverages the high reactivity of Ti precursors to be hydrolyzed on the surface water groups of silica supports. Both lab-made Ti(III) amidinate and commercial Ti(IV) amino precursors were utilized to react with water-rich SBA-15, obtained through a hydration process. The hydrated SBA-15 and the TiO2/SBA-15 nanocomposites were characterized using TGA, FTIR, 1H and 29Si NMR, TEM, SEM, N2 physisorption, XRD, and WAXS. This one-step TiO2 decoration method achieved a loading of up to 51.5 wt.% of approximately 9 nm anatase particles on the SBA-15 surface. This structuring provided excellent accessibility of TiO2 particles for photocatalytic applications under pollutant gas and UV-A light exposure. The combination with the high specific surface area of SBA-15 resulted in the efficient degradation of 400 ppb of NO pollutant gas. Due to synergistic effects, the best nanocomposite in this study demonstrated a NO abatement performance of 4.0% per used mg of TiO2, which is 40% more efficient than the reference photocatalytic material TiO2 P-25.
- Published
- 2024
- Full Text
- View/download PDF
3. Gas Sensing Properties of CuWO4@WO3 n-n Heterojunction Prepared by Direct Hydrolysis of Mesitylcopper (I) on WO3·2H2O Nanoleaves
- Author
-
Justyna Jońca, Kevin Castello-Lux, Katia Fajerwerg, Myrtil L. Kahn, Vincent Collière, Philippe Menini, Izabela Sówka, and Pierre Fau
- Subjects
gas sensors ,CuWO4@WO3 nanocomposite ,n-n heterojunction ,metal–organic synthesis ,CO and NO2 detection ,selectivity ,Biochemistry ,QD415-436 - Abstract
The nanometer size Cu2O@WO3·H2O composite material has been prepared by the direct hydrolysis of mesitylcopper (I) on WO3·2H2O nanoleaves. The synthesis has been performed in toluene without the addition of any ancillary ligands. The prepared nanocomposite has been deposited as a gas-sensitive layer on miniaturized silicon devices and heated up gradually to 500 °C in the ambient air. During the heating, the CuWO4 phase is formed upon the reaction of Cu2O with the WO3 support as revealed by the XRD analyses. The as-prepared CuWO4@WO3 sensors have been exposed to 10 ppm of CO or 0.4 ppm of NO2 (RH = 50%). At the operating temperature of 445 °C, a normalized response of 620% towards NO2 is obtained whereas the response to CO is significantly lower (S = 30%). Under these conditions, the sensors prepared either with pristine CuO or WO3 nanostructures are sensitive to only one of the two investigated gases, i.e., CO and NO2, respectively. Interestingly, when the CuWO4@WO3 sensitive layer is exposed to UV light emitted from a 365 nm Schottky diode, its sensitivity towards CO vanishes whereas the response towards NO2 remains high. Thus, the application of UV illumination allowed us to modify the selectivity of the device. This new nanocomposite sensor is a versatile sensitive layer that will be integrated into a gas sensor array dedicated to electronic nose platforms.
- Published
- 2023
- Full Text
- View/download PDF
4. Straightforward synthesis of gold nanoparticles by adding water to an engineered small dendrimer
- Author
-
Sébastien Gottis, Régis Laurent, Vincent Collière, and Anne-Marie Caminade
- Subjects
colloidal suspension ,complexation ,dendrimer ,gold nanoparticle ,phosphorus ,Technology ,Chemical technology ,TP1-1185 ,Science ,Physics ,QC1-999 - Abstract
A small water-soluble phosphorus-containing dendrimer was engineered for the complexation of gold(I) and for its reduction under mild conditions. Gold nanoparticles were obtained as colloidal suspensions simply and only when the powdered form of this dendrimer was dissolved in water, as shown by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analyses. The dendrimers acted simultaneously as mild reducers and as nanoreactors, favoring the self-assembly of gold atoms and promoting the growth and stabilization of isolated gold nanoparticles. Thus, an unprecedented method for the synthesis of colloidal suspensions of water-soluble gold nanoparticles was proposed in this work.
- Published
- 2020
- Full Text
- View/download PDF
5. Nano-Structuration of WO3 Nanoleaves by Localized Hydrolysis of an Organometallic Zn Precursor: Application to Photocatalytic NO2 Abatement
- Author
-
Kevin Castello Lux, Katia Fajerwerg, Julie Hot, Erick Ringot, Alexandra Bertron, Vincent Collière, Myrtil L. Kahn, Stéphane Loridant, Yannick Coppel, and Pierre Fau
- Subjects
WO3 nanoleaves ,hetero nanomaterials ,localized hydrolysis ,photocatalysis ,NO2 abatement ,Chemistry ,QD1-999 - Abstract
WO3 is a known photocatalytic metal oxide frequently studied for its depollution properties. However, it suffers from a high recombination rate of the photogenerated electron/holes pair that is detrimental to its performance. In this paper, we present a new chemical method to decorate WO3 nanoleaves (NLs) with a complementary metal oxide (ZnWO4) in order to improve the photocatalytic performance of the composite material for the abatement of 400 ppb NO2 under mild UV exposure. Our strategy was to synthesize WO3·2H2O nanoleaves, then, to expose them, in water-free organic solution, to an organometallic precursor of Zn(Cy)2. A structural water molecule from WO3·2H2O spontaneously decomposes Zn(Cy)2 and induces the formation of the ZnO@WO3·H2O nanocomposite. The material was characterized by electronic microscopy (SEM, TEM), TGA, XRD, Raman and solid NMR spectroscopies. A simple thermal treatment under air at 500 °C affords the ZnWO4@WO3 nanocomposite. The resulting material, additionally decorated with 1% wt. Au, presents a remarkable increase (+166%) in the photocatalytic abatement of NO2 under UV compared to the pristine WO3 NLs. This synthesis method paves the way to the versatile preparation of a wide range of MOx@WO3 nanocomposites (MOx = metal oxide).
- Published
- 2022
- Full Text
- View/download PDF
6. Antischistosomal activity of trioxaquines: in vivo efficacy and mechanism of action on Schistosoma mansoni.
- Author
-
Julien Portela, Jérôme Boissier, Benjamin Gourbal, Vincent Pradines, Vincent Collière, Frédéric Coslédan, Bernard Meunier, and Anne Robert
- Subjects
Arctic medicine. Tropical medicine ,RC955-962 ,Public aspects of medicine ,RA1-1270 - Abstract
Schistosomiasis is among the most neglected tropical diseases, since its mode of spreading tends to limit the contamination to people who are in contact with contaminated waters in endemic countries. Here we report the in vitro and in vivo anti-schistosomal activities of trioxaquines. These hybrid molecules are highly active on the larval forms of the worms and exhibit different modes of action, not only the alkylation of heme. The synergy observed with praziquantel on infected mice is in favor of the development of these trioxaquines as potential anti-schistosomal agents.
- Published
- 2012
- Full Text
- View/download PDF
7. Grafting Copper Atoms and Nanoparticles on Double-Walled Carbon Nanotubes: Application to Catalytic Synthesis of Propargylamine
- Author
-
David Mesguich, Lilian Moumaneix, Victor Henri, Morgan Legnani, Vincent Collière, Jérôme Esvan, Armelle Ouali, Pierre Fau, Centre National de la Recherche Scientifique - CNRS (FRANCE), Ecole Nationale Supérieure de Chimie de Montpellier - ENSCM (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), and Université de Montpellier (FRANCE)
- Subjects
Metals ,Matériaux ,Carbon nanotubes ,Electrochemistry ,General Materials Science ,Surfaces and Interfaces ,Catalytic reactions ,Functionalization ,Condensed Matter Physics ,Copper ,Spectroscopy - Abstract
The decoration of carbon nanotubes (CNTs) by metal nanoparticles (NPs) combines the advantages of a high specific surface material with catalytic properties of metal nanocrystals. Little work has been devoted to the decoration of CNTs with copper NPs, and no evidence of copper atomic decoration of CNTs has shown up until now. Herein, we demonstrate that the strong acidic oxidation of double-walled CNTs (dwCNTs) is very efficient for the decoration of the carbon surface by copper NPs and atoms. This treatment severely degraded the CNT walls and generated a large amount of disordered sp3 carbon. This amorphous carbon film bears many chemically active functions like carboxyl and hydroxyl ones. In such conditions, the CNT walls behave as very efficient ligands for the stabilization of copper obtained by the thermolysis of the mesityl precursor in organic solution under mild dihydrogen pressure. In addition to copper NPs, we evidenced the presence of a regular coverage with copper atoms over the dwCNTs. This nanocomposite catalyzes the quantitative synthesis of propargylamines via one A3-type coupling reaction. Five consecutive catalytic cycles with 100% yield could be performed with no loss of activity, and the combination of Cu supported on dwCNTs allows a facile recycling of the catalytic material.
- Published
- 2022
- Full Text
- View/download PDF
8. High Recyclability Magnetic Iron Oxide‐Supported Ruthenium Nanocatalyst for H 2 Release from Ammonia‐Borane Solvolysis
- Author
-
Didier Poinsot, Moad Bouzid, Agathe Burlot, Clève D. Mboyi, Pierre‐Emmanuel Doulain, Jérémy Paris, Olivier Heintz, Bruno Domenichini, Vincent Collière, Myrtil L. Kahn, Jean‐Cyrille Hierso, Institut de Chimie Moléculaire de l'Université de Bourgogne [Dijon] (ICMUB), Université de Bourgogne (UB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne (UB), Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Technologie de Belfort-Montbeliard (UTBM)-Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), CNRS, Université de Bourgogne, Conseil Régional Bourgogne Franche-Comté, and PIA-excellence ISITE-BFC (COMICS project 'Chemistry of Molecular Interactions Catalysis and Sensors' (FEDER)
- Subjects
Biomaterials ,Renewable Energy, Sustainability and the Environment ,Methanolysis ,Materials Chemistry ,Magnetic recycling ,Ruthenium nanocomposite ,[CHIM]Chemical Sciences ,Energy Engineering and Power Technology ,[CHIM.CATA]Chemical Sciences/Catalysis ,Ammonia-borane ,Hydrogen - Abstract
International audience; We report the high capacity of recycling of a technologically simple, easily recoverable, Ru@Fe3O4 magnetic nanocatalyst, efficient in the release of H2 from ammonia-borane (AB) solvolysis, using H2O or methanol at room temperature (25 °C). The initially oxidized Ru small nanoparticles (2–4 nm) are well-dispersed on an iron oxide support (i. e. super paramagnetic iron oxide of spinel structure, SPIO, as aggregates of 20 nm to a few μm). As nanocatalyst, this composite achieved short-time (
- Published
- 2022
- Full Text
- View/download PDF
9. Covalent Grafting of Ruthenium Complexes on Iron Oxide Nanoparticles: Hybrid Materials for Photocatalytic Water Oxidation
- Author
-
Pierre Lecante, Vincent Collière, Marc Respaud, Phong D. Tran, Quyen Nguyen, Van Nguyen, Jérôme Esvan, Karine Philippot, Wantana Klysubun, Catherine Amiens, Gilles Lemercier, Elodie Rousset, Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), University of Science and Technology of Hanoi (USTH), Institut de Chimie Moléculaire de Reims - UMR 7312 (ICMR), Université de Reims Champagne-Ardenne (URCA)-Institut de Chimie du CNRS (INC)-SFR CAP Santé (Champagne-Ardenne Picardie Santé), Université de Reims Champagne-Ardenne (URCA)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-SFR Condorcet, Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Synchrotron Light Research Institute (SLRI), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT), Laboratoire de physique et chimie des nano-objets (LPCNO), Université de Toulouse (UT)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), CNRS, Université de Toulouse Paul-Sabatier, Vietnam Academy of Science and Technology (grant D̵L0000.03/19-21), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), University of sciences and technologies of hanoi (USTH), SFR Condorcet, Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-SFR CAP Santé (Champagne-Ardenne Picardie Santé), Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Université de Reims Champagne-Ardenne (URCA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE), Synchrotron Light Research Institute (THAILAND), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université des Sciences et des Technologies de Hanoi - USTH (VIETNAM), Université de Reims - Champagne-Ardenne (FRANCE), Institut de Chimie Moléculaire de Reims - ICMR (Reims, France), and Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux - CIRIMAT (Toulouse, France)
- Subjects
Materials science ,Matériaux ,Nanoparticle ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,Photochemistry ,01 natural sciences ,7. Clean energy ,Catalysis ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Iron oxide nanoparticles ,General Materials Science ,Pendant group ,Water oxidation catalysis ,Ruthenium-based photosensitizer ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Ruthenium ,chemistry ,Covalent bond ,Photocatalysis ,Hybrid photoanode ,Reversible hydrogen electrode ,0210 nano-technology ,Hybrid material ,Covalent grafting - Abstract
International audience; The present environmental crisis prompts the search for renewable energy sources such as solar-driven production of hydrogen from water. Herein, we report an efficient hybrid photocatalyst for water oxidation, consisting of a ruthenium polypyridyl complex covalently grafted on core/shell Fe@FeOx nanoparticles via a phosphonic acid group. The photoelectrochemical measurements were performed under 1 sun illumination in 1 M KOH. The photocurrent density of this hybrid photoanode reached 20 μA/cm2 (applied potential of +1.0 V vs reversible hydrogen electrode), corresponding to a turnover frequency of 0.02 s–1. This performance represents a 9-fold enhancement of that achieved with a mixture of Fe@FeOx nanoparticles and a linker-free ruthenium polypyridyl photosensitizer. This increase in performance could be attributed to a more efficient electron transfer between the ruthenium photosensitizer and the Fe@FeOx catalyst as a consequence of the covalent link between these two species through the phosphonate pendant group.
- Published
- 2021
- Full Text
- View/download PDF
10. Origin of the synergistic effect between TiO2 crystalline phases in the Ni/TiO2-catalyzed CO2 methanation reaction
- Author
-
Régis Philippe, Vincent Bernardin, Marta Borges Ordoño, Davina Messou, Carole Le Berre, Philippe Serp, Bruno F. Machado, Frederic Meunier, Atsushi Urakawa, Vincent Collière, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Catalyse, Polymérisation, Procédés et Matériaux (CP2M), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institute of Chemical Research of Catalonia (ICIQ), Delft University of Technology (TU Delft), Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia (LSRE-LCM), Universidade do Porto, Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Universidade do Porto = University of Porto, Région Occitanie : laboratory and company contract ‘‘HYDROMET : Renewable CO2 hydrogenation for methane production' (N°15065590), and Fundação para a Ciência e a Tecnologia (FCT, Portugal) Investigator Programme (ref. IF/00301/2015) with financial support from FCT/MCTES, through national funds (PIDDAC)
- Subjects
Anatase ,Titania ,Hydrogen ,010405 organic chemistry ,Inorganic chemistry ,CO methanation ,chemistry.chemical_element ,010402 general chemistry ,01 natural sciences ,Catalysis ,Sabatier reaction ,0104 chemical sciences ,Reaction rate ,Nickel ,Rutile ,Spillover ,chemistry ,Methanation ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Physical and Theoretical Chemistry ,Hydrogen spillover - Abstract
The catalytic performances of TiO2-supported Ni catalysts for the methanation of CO2 have been investigated using different crystalline phases of TiO2 (rutile and anatase). The catalytic activity of Ni depends appreciably on the nature of the support. The rate for CO2 hydrogenation decreases in the order of 10Ni/TiO2-rutile ≫ 10Ni/TiO2-anatase. The use of a mixture of catalysts containing 70% 10Ni/TiO2-anatase + 30% 10Ni/TiO2-rutile allows for a significant increase of the reaction rate related to 100% 10Ni/TiO2-rutile. Importantly, it has been demonstrated that the two catalysts do not need to be in direct contact for the synergetic effect to occur. DRIFTS operando analysis during the methanation reaction shows that adsorbed CO accumulates on Ni/TiO2-anatase and not on Ni/TiO2-rutile, and that the role of the Ni/TiO2-rutile is to assist the hydrogenation of this adsorbed CO on the Ni/TiO2-anatase. Increased CO2 methanation is also observed by adding Ni-free TiO2-anatase to 10Ni/TiO2-rutile, indicating that COx hydrogenation can also occur on bare TiO2-anatase if activated hydrogen can be supplied by another source. H2-TPD analyses and catalytic tests performed after dilution of the catalysts have shown that hydrogen spillover (mediated by surface or gas-phase species) is at the origin of the synergy observed between the two catalysts for the Sabatier reaction.
- Published
- 2021
- Full Text
- View/download PDF
11. Oxidation of methane to methanol over Pd@Pt nanoparticles under mild conditions in water
- Author
-
Laurent Peres, Yaoqiang Chen, Sikai Wang, Jianjun Chen, Pierre Lecante, Vincent Collière, Karine Philippot, Ning Yan, Department of Chemical and Biomolecular Engineering, National University of Singapore, National University of Singapore (NUS), Institute of New Energy and Low-carbon Technology, Sichuan University [Chengdu] (SCU), Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Singapore National Research Foundation (WBS: R-279-000-530-281), ANR-17-CE06-0017,PRECINANOMAT,Nanomatériaux finement contrôlés pour catalyser la transformation du CO2 en carburants de synthèse et molécules plateformes.(2017), Joint School of National University of Singapore and Tianjin, Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
- Subjects
010405 organic chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Kinetic analysis ,Nanoparticle ,[CHIM.CATA]Chemical Sciences/Catalysis ,010402 general chemistry ,Photochemistry ,7. Clean energy ,01 natural sciences ,Catalysis ,Methane ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Anaerobic oxidation of methane ,Methanol ,Pt nanoparticles ,Selectivity - Abstract
International audience; Direct methane oxidation into oxygen-containing chemicals under mild conditions has sparked increasing interest. Here, we report Pd@Pt core–shell nanoparticles that efficiently catalyse the direct oxidation of CH4 to CH3OH in water using H2O2 as an oxidant under mild conditions. The catalyst presents a methanol productivity of up to 89.3 mol kgcatalyst−1 h−1 with a high selectivity of 92.4% after 30 min at 50 °C, thus outperforming most of the previously reported catalysts. Electron-enriched Pt species in the Pd@Pt nanoparticles were identified by structural and electronic analysis. Pd in the core donates electrons to Pt, leading to higher rates of methane activation. Based on the results of control experiments and kinetic analysis, a consecutive oxidation pathway via a radical mechanism is proposed, which includes initial formation of CH3OOH and CH3OH followed by further oxidation of CH3OH to HCHO, HCOOH, and CO2.
- Published
- 2021
- Full Text
- View/download PDF
12. Reorganization of a photosensitive carbo-benzene layer in a triptych nanocatalyst with enhancement of the photocatalytic hydrogen production from water
- Author
-
Vincent Collière, Valérie Maraval, Gérald Casterou, Laure Vendier, Yves J. Chabal, Katia Fajerwerg, Kévin Cocq, Pierre Fau, Hala Assi, Kévin Castello Lux, Remi Chauvin, Myrtil L. Kahn, Jérémy Cure, Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), University of Texas at Dallas [Richardson] (UT Dallas), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (IDEX MUSE project), ANR-16-IDEX-0006,MUSE,MUSE(2016), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Hydrogen ,Energy Engineering and Power Technology ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,Silver nanoparticle ,Nanomaterials ,Molecule ,Photocatalytic hydrogen production ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Reorganization ,Hydrogen production ,Plasmonic nanoparticles ,Renewable Energy, Sustainability and the Environment ,Titanium dioxide nanoparticles ,Triptych material ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Fuel Technology ,Chemical engineering ,chemistry ,Photocatalysis ,Silver nanoparticles ,0210 nano-technology ,Layer (electronics) ,Carbo-benzene dye - Abstract
International audience; The preparation of a triptych nanomaterial made of TiO2 nanoparticles as semiconductor, Ag plasmonic nanoparticles and a carbo-benzene macrocyclic molecule as photosensitizer is described, and used to produce hydrogen by photo-reduction of pure deionized water under 2.2 bar argon pressure without any electrical input. Silver nanoparticles (~5 nm) are grafted onto the surface of commercial TiO2 nanoparticles (~23 nm) by a photo-deposition process using an original silver amidinate precursor. The thickness of the photosensitive layer (2 nm), which completes the assembly, plays a crucial role in the efficiency and robustness of the triptych nanocatalyst. Thanks to the organic layer reorganization during the first ~24 h of irradiation, it leads to an enhancement of the hydrogen production rate up to 5 times. The amount of silver and carbo-benzene are optimized, along with the mass concentration of nanocatalyst in water and the pH of the aqueous medium, to allow reaching a hydrogen production rate of 22.1 μmol·h−1·gphotocatalyst−1.
- Published
- 2020
- Full Text
- View/download PDF
13. Catalysis to discriminate single atoms from subnanometric ruthenium particles in ultra-high loading catalysts
- Author
-
Pierre Lecante, M. R. Axet, Romuald Poteau, Vincent Collière, I. del Rosal, Iann C. Gerber, Camila Rivera‐Cárcamo, Divya Nechiyil, Wolfgang Bacsa, Faqiang Leng, Philippe Serp, Anna Corrias, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC), Surfaces, Interfaces et Nano-Objets (CEMES-SINanO), Centre d'élaboration de matériaux et d'études structurales (CEMES), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), University of Kent [Canterbury], Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Extended X-ray absorption fine structure ,chemistry.chemical_element ,Nanoparticle ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Materials for Energy and Electronics ,01 natural sciences ,Catalysis ,0104 chemical sciences ,Ruthenium ,symbols.namesake ,chemistry ,X-ray photoelectron spectroscopy ,symbols ,Physical chemistry ,Density functional theory ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,0210 nano-technology ,High-resolution transmission electron microscopy ,Raman spectroscopy - Abstract
International audience; We report a procedure for preparing ultra-high metal loading (10–20% w/w Ru) Ru@C60 nanostructured catalysts comprising exclusively Ru single atoms. We show that by changing the Ru/C60 ratio and the nature of the solvent used during the synthesis, it is possible to increase the Ru loading up to 50% w/w, and to produce hetero-structures containing subnanometric Ru nanoparticles. Several techniques such as high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF), Raman spectroscopy, wide-angle X-ray scattering (WAXS), extended X-ray absorption fine structure (EXAFS) and X-ray photoelectron spectroscopy (XPS) together with theoretical calculations were used to characterize these materials. At such high metal loadings, the distinction between Ru single atoms and clusters is not trivial, even with this combination of techniques. We evaluated the catalytic properties of these materials for the hydrogenation of nitrobenzene and 2,3-dimethyl-2-butene. The catalysts containing only Ru single atoms are much less active for these reactions than the ones containing clusters. For nitrobenzene hydrogenation, this is because electron-deficient Ru single atoms and few atom Run clusters are not performant for H2 activation compared to larger clusters (n ≥ 13), as shown by density functional theory (DFT) calculations. For the more crowded substrate 2,3-dimethyl-2-butene, DFT calculations have shown that this is due to steric hindrance. These simple tests can thus be used to distinguish samples containing metallic subnanometric nanoparticles. These novel catalysts are also extremely active for the hydrogenation of tetra-substituted 2,3-dimethyl-2-butene.
- Published
- 2020
- Full Text
- View/download PDF
14. π-Stacking Interactions of Graphene-Coated Cobalt Magnetic Nanoparticles with Pyrene-Tagged Dendritic Poly(Vinylidene Fluoride)
- Author
-
Vincent Collière, Anne-Marie Caminade, Enrique Folgado, Marc Guerre, Christian Bijani, Kathleen I. Moineau-Chane Ching, Bruno Ameduri, Nidhal Mimouni, Vincent Ladmiral, Armelle Ouali, Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM ICMMM), Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Université Montpellier 2 - Sciences et Techniques (UM2)-Institut de Chimie du CNRS (INC), Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
π-stacking ,magnetic nanoparticles ,Dendrimers ,Materials science ,Stacking ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Fluorescence spectroscopy ,law.invention ,chemistry.chemical_compound ,law ,Dendrimer ,Moiety ,Pyrenes ,Graphene ,[CHIM.MATE]Chemical Sciences/Material chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Poly(vinylidenefluoride) ,[CHIM.POLY]Chemical Sciences/Polymers ,chemistry ,Chemical engineering ,Pyrene ,Magnetic nanoparticles ,0210 nano-technology ,Cobalt - Abstract
International audience; This study investigates the non-covalent coating of cobalt magnetic nanoparticles (MNPs) involving a graphene surface with pyrene-tagged dendritic poly(vinylidene fluoride) (PVDF). Dendrimers bearing a pyrene moiety were selected to play the role of spacers between the graphene surface of the MNPs and the PVDF chains, the pyrene unit being expected to interact with the surface of the MNPs. The pyrene-tagged dendritic spacer 11 decorated with ten acetylenic units was prepared and fully characterized. Azido-functionalized PVDF chains were then grafted onto each branch of the dendrimer using Huisgen’s [3 + 2] cycloaddition reaction. Next, the association of the resulting pyrene-tagged dendritic PVDF 13 with commercially available Co/C MNPs by π -stacking interactions was studied by fluorescence spectroscopy. Evaluated were the stability of the π -stacking interactions when the temperature increased and the reversibility of the process when the temperature de- creased. Also, hybrid MNPs were prepared from pyrene-tagged dendrimers decorated either with acetylenic functions ( 11 ) or with PVDF branches ( 13 ), and they were characterized by transmission electron microscopy and comparative elemental analysis was carried out with naked MNPs.
- Published
- 2018
- Full Text
- View/download PDF
15. Straightforward synthesis of gold nanoparticles by adding water to an engineered small dendrimer
- Author
-
Vincent Collière, Anne-Marie Caminade, Sébastien Gottis, Régis Laurent, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire réactivité et chimie des solides - UMR CNRS 7314 (LRCS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université de Picardie Jules Verne (UPJV)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), CNRS, Région Midi-Pyrénées, and GDR-CNRS 'Phosphore'
- Subjects
Letter ,Materials science ,Gold nanoparticle ,General Physics and Astronomy ,Nanoreactor ,lcsh:Chemical technology ,010402 general chemistry ,lcsh:Technology ,01 natural sciences ,Colloid ,Dendrimer ,Nanotechnology ,lcsh:TP1-1185 ,General Materials Science ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Electrical and Electronic Engineering ,lcsh:Science ,Spectroscopy ,Colloidal suspension ,lcsh:T ,010405 organic chemistry ,Phosphorus ,[CHIM.MATE]Chemical Sciences/Material chemistry ,lcsh:QC1-999 ,0104 chemical sciences ,Nanoscience ,Chemical engineering ,Colloidal gold ,Transmission electron microscopy ,lcsh:Q ,Complexation ,lcsh:Physics - Abstract
International audience; A small water-soluble phosphorus-containing dendrimer was engineered for the complexation of gold(I) and for its reduction under mild conditions. Gold nanoparticles were obtained as colloidal suspensions simply and only when the powdered form of this dendrimer was dissolved in water, as shown by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analyses. The dendrimers acted simultaneously as mild reducers and as nanoreactors, favoring the self-assembly of gold atoms and promoting the growth and stabilization of isolated gold nanoparticles. Thus, an unprecedented method for the synthesis of colloidal suspensions of water-soluble gold nanoparticles was proposed in this work.
- Published
- 2020
- Full Text
- View/download PDF
16. A porous Ru nanomaterial as an efficient electrocatalyst for the hydrogen evolution reaction under acidic and neutral conditions
- Author
-
Xavier Sala, Vincent Collière, Samuel Drouet, Catherine Amiens, Jordi Creus, Karine Philippot, Jordi García-Antón, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Departament de Química [Barcelona] (UAB), and Universitat Autònoma de Barcelona (UAB)
- Subjects
Materials science ,Inorganic chemistry ,Metals and Alloys ,02 engineering and technology ,General Chemistry ,Overpotential ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Electrocatalyst ,7. Clean energy ,01 natural sciences ,Durability ,Catalysis ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Nanomaterials ,Materials Chemistry ,Ceramics and Composites ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Hydrogen evolution ,0210 nano-technology ,Porosity ,Current density - Abstract
International audience; A porous Ru nanomaterial exhibits high electrocatalytic performance and excellent durability for the hydrogen evolution reaction (HER) under both acidic and neutral conditions. It displays a low overpotential of 83 mV at a current density of 10 mA cm-2 and an excellent durability up to 12 h in 0.5 M H2SO4.
- Published
- 2017
- Full Text
- View/download PDF
17. Rh nanoparticles with NiO x surface decoration for selective hydrogenolysis of C O bond over arene hydrogenation
- Author
-
Hiroyuki Asakura, Karine Philippot, Mahmoud Ibrahim, Ning Yan, Jiaguang Zhang, Vincent Collière, Tsunehiro Tanaka, Kentaro Teramura, Department of Chemical and Biomolecular Engineering, National University of Singapore, National University of Singapore (NUS), Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Synchrotron Radiation Research Center, Nagoya University, Nagoya University, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan, Unit of Element Strategy Initiative for Catalysts & Batteries, ESICB, Kyoto University, Kyoto University [Kyoto], and Japan Sci & Technol Agcy, PRESTO, Saitama, Japan
- Subjects
010405 organic chemistry ,Process Chemistry and Technology ,Non-blocking I/O ,Nanoparticle ,Hydrogen treatment ,010402 general chemistry ,Ring (chemistry) ,Photochemistry ,01 natural sciences ,Catalysis ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Hydrogenolysis ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Physical and Theoretical Chemistry ,Benzene - Abstract
International audience; Surface decoration strategy is applied to design NP catalyst for the selective hydrogenolysis of C-O bond without hydrogenating benzene ring, which is critical in lignin conversion under hydrogen treatment. The synthesized NiOx/Rh NPs are featured with-Rh core whose surface is partially blocked by NiOx which segregated the surface terrace zones into smaller segments, preventing the coordination and hydrogenation of benzene rings. Moreover, the NiOx shows, no electronic modification to the Rh core, thereby the blockage effect of NiOx only inhibits the hydrogenation of benzene ring but not affect the hydrogenolysis activity-of Rh core.
- Published
- 2016
- Full Text
- View/download PDF
18. Urea-assisted cooperative assembly of phosphorus dendrimer–zinc oxide hybrid nanostructures
- Author
-
Mosto Bousmina, Samir El Hankari, Abdelkrim El Kadib, Yannick Coppel, Nadia Katir, Jean-Pierre Majoral, Vincent Collière, Université Euro Méditerranéenne de Fès (UEMF), Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Chemistry ,Nucleation ,Oxide ,chemistry.chemical_element ,02 engineering and technology ,General Chemistry ,Zinc ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Catalysis ,0104 chemical sciences ,chemistry.chemical_compound ,Chemical engineering ,Dendrimer ,Materials Chemistry ,Lamellar structure ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Leaching (metallurgy) ,0210 nano-technology ,Mesoporous material ,Hybrid material - Abstract
International audience; Herein, phosphorus dendrimer-assisted sol–gel mineralisation of molecular zinc species is explored to access porous dendrimer–zinc oxide hybrid materials. Screening of various second-generation dendrimers peripherally-functionalized by phosphonate, catechol, ammonium and acetylacetonate groups showed a marked difference in terms of their morphology and hybrid composition, thereby highlighting the importance of surface-chemistry for the nucleation and growth of the zinc oxide inorganic phase. The homogeneous composition and distribution of the two dissimilar dendritic and metal oxide building-blocks is reached using phosphonate-terminated and catechol-terminated dendrimers. In contrast, significant leaching occurs in the case of ammonium-terminated and acetylacetonate-terminated dendrimers, leading rather to an enriched zinc oxide monophasic system. When urea was added as a ternary component, beyond improving mineralisation, interesting cooperative assembly was observed, particularly in the case of phosphonate-terminal dendrimers, which resulted in the formation of mesoporous phosphorus-containing lamellar zinc oxide hybrid materials.
- Published
- 2019
- Full Text
- View/download PDF
19. Controlled Growth of Ag Nanocrystals in a H‐Bonded Open Framework
- Author
-
Vincent Collière, Walid Khodja, Jean-Pascal Sutter, Nans Roques, Myrtil L. Kahn, Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), ANR-15-CE29-0013,InsidePores,CONTROLE DE FORME ET ORGANISATION DE NANO-MATERIAUX INORGANIQUES AU SEIN DE MATRICES SUPRAMOLECULAIRES POREUSES RECYCLABLES(2015), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010405 organic chemistry ,Chemistry ,Organic Chemistry ,Supramolecular chemistry ,Nanoparticle ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,010402 general chemistry ,Crystal engineering ,01 natural sciences ,Catalysis ,0104 chemical sciences ,Nanomaterials ,Metal ,Nanocrystal ,Chemical engineering ,visual_art ,visual_art.visual_art_medium ,Porosity ,Hybrid material - Abstract
International audience; A procedure that enabled rational access to the first example of hybrid material made of NPs grown within a H-bonded framework is reported. To avoid competitive reactions with the framework units, the metal precursor was chemically trapped in the porous structure and subsequently photo-reduced to afford the hybrid material Ag@SPA-2, which consists of Ag NPs of nanometric sizes (
- Published
- 2019
- Full Text
- View/download PDF
20. Light-driven water oxidation using hybrid photosensitizer-decorated Co3O4 nanoparticles
- Author
-
Nuria Romero, Antoni Llobet, Samuel Drouet, Sergey A. Denisov, Jonathan De Tovar, Jordi García-Antón, Pierre Lecante, Carolina Gimbert-Suriñach, Zoraida Freixa, Catherine Amiens, Karine Philippot, Vincent Collière, Roger Bofill, Diana Ciuculescu-Pradines, Nathan D. McClenaghan, Xavier Sala, Departament de Química [Barcelona] (UAB), Universitat Autònoma de Barcelona (UAB), Institut des Sciences Moléculaires (ISM), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1 (UB)-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institute of Chemical Research of Catalonia (ICIQ), Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Facultad de Quimica de San Sebastian, Universidad del Pais Vasco, Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Ikerbasque - Basque Foundation for Science, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT), Université Montesquieu - Bordeaux 4-Université Sciences et Technologies - Bordeaux 1-École Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Basque Foundation for Science (Ikerbasque), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Water oxidation ,Materials science ,Materials Science (miscellaneous) ,Energy Engineering and Power Technology ,Nanoparticle ,chemistry.chemical_element ,02 engineering and technology ,Glassy carbon ,010402 general chemistry ,Photochemistry ,Electrocatalyst ,7. Clean energy ,01 natural sciences ,Catalysis ,Transition metal ,Co3O4 nanoparticles ,[CHIM]Chemical Sciences ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Photocatalysis ,Renewable Energy, Sustainability and the Environment ,Dyad systems ,021001 nanoscience & nanotechnology ,Nanomaterial-based catalyst ,0104 chemical sciences ,Fuel Technology ,Nuclear Energy and Engineering ,chemistry ,0210 nano-technology ,Electrocatalysis ,Cobalt - Abstract
Cobalt nanoparticles (NPs) have been prepared by hydrogenation of the organometallic complex [Co(η 3 -C 8 H 13 )(η 4 -C 8 H 12 )] in 1-heptanol in the absence of any other stabilizer and then transformed into Co 3 O 4 NPs using mild oxidative reaction conditions. After deposition onto glassy carbon rotating disk electrodes, the electrocatalytic performance of the Co 3 O 4 NPs in water oxidation has been tested in 1M NaOH. The activity has been benchmarked with that of state-of-the-art Co 3 O 4 NPs through electrochemically-active surface area (ECSA) and specific current density measurements. Furthermore, the covalent grafting of photosensitive polypyridyl-based Ru II complexes onto the surface of Co 3 O 4 NPs afforded hybrid nanostructured materials able to photo-oxidize water into O 2 , while steady-state and time-resolved spectroscopic measurements gave some further insight into kinetics and pertinent reaction steps following excitation. These first-row transition metal oxide hybrid nanocatalysts display better catalytic performance than simple mixtures of non-grafted photosensitizers and Co 3 O 4 NPs, thus evidencing the advantage of the direct coupling between the two entities for the photo-induced water oxidation reaction.
- Published
- 2018
- Full Text
- View/download PDF
21. Deoxygenation of oleic acid: Influence of the synthesis route of Pd/mesoporous carbon nanocatalysts onto their activity and selectivity
- Author
-
Vasile I. Parvulescu, Eduardo J. Garcia-Suarez, Emil Stepan, Solen Kinayyigit, Sanda Velea, Liviu Cristian Tanase, A. Dragu, Karine Philippot, Mihaela Florea, Pascal Granger, Vincent Collière, University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Sabanci University, Nanotechnology Research and Application Center, Sabanci University [Istanbul], CSIC, Inst Nacl Carbon INCAR, POB 73, Oviedo 33080, Spain, The National Institute for Research & Development in Chemistry and Petrochemistry (ICECHIM), Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Centrale Lille Institut (CLIL)-Université d'Artois (UA)-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Lille, Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), and Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010405 organic chemistry ,Decarboxylation ,Process Chemistry and Technology ,Decarbonylation ,Inorganic chemistry ,chemistry.chemical_element ,010402 general chemistry ,01 natural sciences ,Catalysis ,Nanomaterial-based catalyst ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Octadecane ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Mesitylene ,Deoxygenation ,Palladium - Abstract
International audience; Supported Pd nanocatalysts were prepared by deposition of Pd nanoparticles (NPs) onto spherical mesoporous carbon beads (MB) functionalized by thermal or acidic treatement The Pd NPs were synthesized by decomposition of [Pd-2(dba)(3)] (dba: dibenzylideneacetone) under dihydrogen either directly on the carbon supports without stabilizer leading to naked Pd NPs (Pd/MB series) or in solution in the presence of a stabilizer (polymer (PVP series) or triphenylphosphine (TPP series)) to obtain stable colloidal solutions that were further used to impregnate the carbon materials to have carbon-deposited Pd NPs. The NPs deposited on carbon displayed a Pd loading from 0.5 to 14.8 wt.% and were characterized by different techniques (nitrogen physisorption at 77 K, H-2-chemissorption and TPD, XRD, XPS and HRTEM). Their catalytic performance in deoxygenation of oleic acid was evaluated in batch and flow reaction conditions. Flow conditions led to superior results compared to batch. No aromatic compounds were detected as side products, but in the case of the Pd/MB series, octadecanol and octadecane were significantly formed suggesting the involvement of a deoxygenation mechanism in which the hydrocarbons were produced via both decarbonylation/decarboxylation and dehydration steps. Further experiments carried out in H-2/N-2 mixture or in pure N-2 highlighted the key role of hydrogen. For a N-2/H-2 of 2.5:1 the dehydration route was crossing out and even no traces of octadecanol nor octadecane were detected. Then, complete removal of H-2 produced heptadecene in a high excess compared to heptadecane (almost 7-1) thus suggesting the decarbonylation/decarboxylation steps as the main route. ICP-OES measurements indicated no leaching of palladium and simple washing of catalysts with mesitylene allowed recycling without any change in conversion or product distribution.
- Published
- 2015
- Full Text
- View/download PDF
22. Thiophosphate/Phosphonate-Containing Cross-Linked PEGs and Their Use for the Stabilization of Silver Nanoparticles
- Author
-
Arnaud Glaria, Anne-Marie Caminade, Vincent Collière, Cédric-Olivier Turrin, and Aurélien Hameau
- Subjects
chemistry.chemical_compound ,Aqueous solution ,chemistry ,Dimethylphosphite ,PEG ratio ,Polymer chemistry ,technology, industry, and agriculture ,Silver acetate ,General Chemistry ,Phosphonate ,Ethylene glycol ,Silver nanoparticle ,Thiophosphate - Abstract
A simple strategy was developed to obtain poly(ethylene glycol) (PEG)-based materials incorporating phosphonate functions and thiophosphate groups from readily accessible symmetrical PEG compounds and trifunctional thiophosphates. These materials are obtained in a two-step procedure, via the formation of THF soluble, hyperbranched PEG-based polyazomethines that are subsequently functionalized with dimethylphosphite. The resulting materials are hydrolytically degradable, and upon exposure to aqueous solutions of silver acetate they afford stable colloidal solutions of silver.
- Published
- 2015
- Full Text
- View/download PDF
23. Selective ligand-free cobalt-catalysed reduction of esters to aldehydes or alcohols
- Author
-
Florent Blanchard, Pardis Simon, Vincent Rysak, Martine Trentesaux, Laurence Burylo, Francine Agbossou-Niedercorn, Armel Descamps-Mandine, Vincent Collière, Christophe Michon, Maxence Vandewalle, Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre de microcaractérisation Raimond Castaing (Centre Castaing), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Centrale Lille Institut (CLIL)-Université d'Artois (UA)-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Lille, Centre de microcaractérisation Raimond Castaing (CMCR), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Unité de Catalyse et de Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Ecole Centrale de Lille-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,inorganic chemicals ,Base (chemistry) ,010405 organic chemistry ,Hydrosilylation ,Ligand ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,chemistry.chemical_element ,Nanoparticle ,[CHIM.CATA]Chemical Sciences/Catalysis ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,Catalysis ,0104 chemical sciences ,chemistry.chemical_compound ,chemistry ,Phenylsilane ,X-ray photoelectron spectroscopy ,Polymer chemistry ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Cobalt ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience; Cobalt(II) salts combined with NaBHEt3 and eventually a base catalyse efficiently and selectively the reduction of esters to aldehydes or alcohols through hydrosilylation by using phenylsilane. Catalyst characterisation by XRD, XPS, TEM and STEM analyses indicates the materials were partially crystalline with the presence of cobalt nanoparticles. Control experiments suggested low valent Co(0) was the active catalytic species involved.
- Published
- 2018
- Full Text
- View/download PDF
24. Organometallic Preparation of Ni, Pd, and NiPd Nanoparticles for the Design of Supported Nanocatalysts
- Author
-
Erico Teixeira-Neto, Liane M. Rossi, Karine Philippot, Natalia J. S. Costa, Miguel Guerrero, Vincent Collière, Richard Landers, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and University of Campinas (UNICAMP)
- Subjects
Materials science ,HIDROGENAÇÃO ,Inorganic chemistry ,Cyclohexene ,chemistry.chemical_element ,Nanoparticle ,General Chemistry ,engineering.material ,Catalysis ,Nanomaterial-based catalyst ,chemistry.chemical_compound ,Nickel ,chemistry ,engineering ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Noble metal ,Bimetallic strip ,Palladium - Abstract
International audience; The preparation of bimetallic nanoparticles with controlled size, shape, and composition remains a difficult task, and reproducible methods are highly desired. Here, we report the codecomposition of Ni(cod)2 and Pd2(dba)3 organometallic precursors in the presence of hexadecylamine (HDA) and hydrogen as an efficient approach to get size-controlled bimetallic nickel–palladium nanoparticles. Presynthesized nickel–palladium nanoparticles of different Ni/Pd ratios were further used for the preparation of supported catalysts by the sol–immobilization method onto a magnetic silica. The obtained supported catalysts were investigated in the hydrogenation of cyclohexene and compared to Ni and Pd monometallic catalysts. The catalysts prepared with a 1:9 Ni/Pd molar ratio achieved the highest initial turnover frequency > 50 000 h–1, providing higher activity than the pure Pd monometallic counterpart. This represents an important saving of noble metal. Moreover, the magnetic separation allows excellent separation of the catalyst from the liquid products without metal leaching and exposure to air, leading to an efficient recycling.
- Published
- 2014
- Full Text
- View/download PDF
25. A study on the synthesis of Ni50Co50 alloy nanostructures with tuned morphology through metal–organic chemical routes
- Author
-
Myrtil L. Kahn, Stefanos Mourdikoudis, Vincent Collière, Pierre Fau, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Materials science ,Nanostructure ,Alloy ,Nanowire ,chemistry.chemical_element ,Nanoparticle ,Nanotechnology ,02 engineering and technology ,Coercivity ,engineering.material ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Inorganic Chemistry ,Nickel ,chemistry ,Chemical engineering ,engineering ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,0210 nano-technology ,High-resolution transmission electron microscopy ,Cobalt - Abstract
International audience; NiCo bimetallic nanostructures with various morphologies have been synthesized using a broad range of solvents, surfactants and precursors that are available in the metal-organic chemical toolbox. Polygonal particles, nanowires and isotropic nanospheres have been obtained, among others. We describe the chemical pathways to achieve anisotropic growth either by an 'in situ' seed-mediated approach or by simply selecting suitable reaction media and growth modifiers. We describe the role of a variety of synthetic factors that influence the final shape of such an alloy material at the nanoscale. The alloying between cobalt and nickel is evidenced by XRD and HRTEM techniques. Room-temperature ferromagnetic behavior is observed for NiCo nanoparticles and high values for saturation magnetization and coercivity are recorded by SQuID magnetometry. The saturation magnetization value for the NiCo nanostructures is typically set between the corresponding "bulk" ones of cobalt and nickel metals. It is always comparable to the suggested value of the Ni50Co50 bulk alloy. The synthetic protocols derived from our extensive study are quantitative and versatile, allowing high reaction yields. Although macroscopic characterization techniques evidence the presence of a stoichiometric NiCo alloy, we show that in certain cases nanoscale characterization analyses are also needed for a more accurate evaluation of the alloy composition at the atomic level.
- Published
- 2014
- Full Text
- View/download PDF
26. Metal–Organic Pathways for Anisotropic Growth of a Highly Symmetrical Crystal Structure: Example of the fcc Ni
- Author
-
Catherine Amiens, Stefanos Mourdikoudis, Vincent Collière, Myrtil L. Kahn, Pierre Fau, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nanostructure ,Materials science ,Metal Nanoparticles ,Nanotechnology ,02 engineering and technology ,Crystal structure ,010402 general chemistry ,01 natural sciences ,Nanomaterials ,Metal ,Crystal ,Nickel ,Electrochemistry ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,General Materials Science ,Organic Chemicals ,Spectroscopy ,Alkyl ,chemistry.chemical_classification ,Surfaces and Interfaces ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,0104 chemical sciences ,Nanocrystal ,chemistry ,Chemical engineering ,Yield (chemistry) ,visual_art ,visual_art.visual_art_medium ,Anisotropy ,0210 nano-technology - Abstract
International audience; The control of the metallic nanocrystal shape is of prime importance for a wide variety of applications. We report a detailed research work on metal–organic chemical routes for the synthesis of a highly symmetrical crystal structure. In particular, this study shows the key parameters ensuring the anisotropic growth of nickel nanostructures (fcc crystal). Numerous reaction conditions are investigated (precursors, solvents, temperature, reducing agents, reaction time, and types and ratios of surfactants, such as alkyl amines, carboxylic acids, and phosphine oxides), and their effects on the size and shape of the final product are reported. The role of the growth modifiers and the structuring of the reaction media on the anisotropic growth are demonstrated. This metal–organic approach generates several novel anisotropic nanostructures in a wide size range depending on the reaction conditions. In this way, nanomaterials with reproducible size, shape, and composition are obtained with good yield. Transmission electron microscopy techniques (TEM and HRTEM) are the principal methods for monitoring the morphology.
- Published
- 2013
- Full Text
- View/download PDF
27. Alkyl phosphonic acid-based ligands as tools for converting hydrophobic iron nanoparticles into water soluble iron–iron oxide core–shell nanoparticles
- Author
-
Catherine Amiens, Diana Ciuculescu-Pradines, Paul Mathieu, Vincent Collière, Véronique Montembault, Leila Samia Smiri, Karine Philippot, Yannick Coppel, Kais Gharbi, Florent Salles, Laurent Fontaine, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, Faculté des Sciences de Bizerte [Université de Carthage], Université de Carthage - University of Carthage, Institut des Molécules et Matériaux du Mans (IMMM), and Le Mans Université (UM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Inorganic chemistry ,Iron oxide ,Oxide ,Nanoparticle ,02 engineering and technology ,engineering.material ,010402 general chemistry ,01 natural sciences ,Catalysis ,Nanomaterials ,chemistry.chemical_compound ,Magnetization ,Materials Chemistry ,Alkyl ,ComputingMilieux_MISCELLANEOUS ,chemistry.chemical_classification ,Chemistry ,[CHIM.ORGA]Chemical Sciences/Organic chemistry ,Spinel ,General Chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,[CHIM.POLY]Chemical Sciences/Polymers ,engineering ,0210 nano-technology ,Layer (electronics) - Abstract
Phosphonic acid derivatives are suitable compounds for controlling the surface properties of materials and nanomaterials. Here, we present for the first time the use of alkyl phosphonic acid ligands to transfer into water zero-valent iron nanoparticles (FeNP) synthesized by an organometallic approach. The transfer takes place with the formation of an oxide layer at the surface of the iron nanoparticles, beneficial for the coordination of the alkyl phosphonic acid ligands. The nanoparticles are highly soluble in water and present a core–shell structure, with a monocrystalline body-centered cubic iron core of ca. 10 nm in size surrounded by a spinel oxide shell of ca. 2 nm thickness. These hydrophilic nanoparticles display excellent structural stability, magnetization still reaching 70% of that of bulk iron, and a transversal relaxivity r2 of 335 mM−1 s−1 which give them high potential for biomedical applications.
- Published
- 2017
- Full Text
- View/download PDF
28. Remarkable decrease in the oxidation rate of Cu nanocrystals controlled by alkylamine ligands
- Author
-
Bruno Chaudret, Adnen Mlayah, Jérémy Cure, Vincent Collière, Arnaud Glaria, Pier-Francesco Fazzini, Pierre Fau, Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), STMicroelectronics, Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Nano-Optique et Nanomatériaux pour l'optique (CEMES-NeO), Centre d'élaboration de matériaux et d'études structurales (CEMES), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)
- Subjects
Chemistry ,Inorganic chemistry ,Kinetics ,Oxide ,Nanoparticle ,chemistry.chemical_element ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Photochemistry ,01 natural sciences ,Copper ,Oxygen ,0104 chemical sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Colloid ,chemistry.chemical_compound ,General Energy ,Adsorption ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Physical and Theoretical Chemistry ,Surface plasmon resonance ,0210 nano-technology - Abstract
International audience; Colloidal solutions of copper nanoparticles (7.2 +/- 1.1 nm 1.6 diameter), stabilized by alkylamine ligands, show a remarkably long persistence (several months) of the localized surface plasmon resonance (LSPR) when exposed to ambient air at room temperature. The oxidation kinetics of these nanoparticles have been investigated by optical spectroscopy and modeled using numerical simulations. Three distinct oxidation regimes are evidenced: (i) A fast regime in which oxygen is adsorbed and dissociated on the nanoparticle to form preoxide islands; (ii) a slower regime where the coalescence of the oxide islands takes place up to the formation of a complete Cu(2)0 shell; (iii) and finally an extremely slow oxidation of the residual copper core and eventually the formation of hollow Cu20 nanoparticles. The adsorption rate of oxygen on copper nanoparticles is controlled by the amount of alkylamine ligands in solution (from 0.1 to 2 mol equiv).
- Published
- 2017
- Full Text
- View/download PDF
29. Solution Layer Deposition: A Technique for the Growth of Ultra-Pure Manganese Oxides on Silica at Room Temperature
- Author
-
Vincent Collière, Jérôme Esvan, Eric Bêche, Pierre Fau, Yannick Coppel, Kilian Piettre, Bruno Chaudret, Jérémy Cure, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), STMicroelectronics [Tours] (ST-TOURS), Procédés, Matériaux et Energie Solaire (PROMES), Université de Perpignan Via Domitia (UPVD)-Centre National de la Recherche Scientifique (CNRS), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), STMicroelectronics, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE), STMicroelectronics (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université de Perpignan Via Domitia - UPVD (FRANCE), Laboratoire Procédés, Matériaux et Energie Solaire - PROMES (Perpignan, France), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
Silicon ,Layer deposition ,Matériaux ,Inorganic chemistry ,Oxide ,chemistry.chemical_element ,manganese amidinate ,02 engineering and technology ,Manganese ,Substrate (electronics) ,010402 general chemistry ,01 natural sciences ,Catalysis ,chemistry.chemical_compound ,Synthesis ,X-ray photoelectron spectroscopy ,Génie chimique ,[CHIM]Chemical Sciences ,High-resolution transmission electron microscopy ,magic angle spinning NMR ,Metal oxide layers ,MgO on ,010405 organic chemistry ,solution deposition ,Silica ,General Medicine ,General Chemistry ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Magic angle spinning NMR ,0104 chemical sciences ,Amorphous solid ,contamination-free ,Contamination-free ,chemistry ,metal oxide layers ,0210 nano-technology ,Solution deposition ,Manganese amidinate ,Layer (electronics) - Abstract
International audience; With the ever increasing miniaturization in microelectronic devices, new deposition techniques are required to form high-purity metal oxide layers. Herein, we report a liquid route to specifically produce thin and conformal amorphous manganese oxide layers on silicon substrate, which can be transformed into a manganese silicate layer. The undesired insertion of carbon into the functional layers is avoided through a solution metal–organic chemistry approach named Solution Layer Deposition (SLD). The growth of a pure manganese oxide film by SLD takes place through the decoordination of ligands from a metal–organic complex in mild conditions, and coordination of the resulting metal atoms on a silica surface. The mechanism of this chemical liquid route has been elucidated by solid-state 29Si MAS NMR, XPS, SIMS, and HRTEM.
- Published
- 2016
- Full Text
- View/download PDF
30. Influence of the gold nanoparticles electrodeposition method on Hg(II) trace electrochemical detection
- Author
-
David Evrard, Katia Fajerwerg, Teddy Hezard, Philippe Behra, Pierre Gros, Vincent Collière, Chimie Agro-Industrielle (CAI), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole nationale supérieure des ingénieurs en arts chimiques et technologiques-Institut National de la Recherche Agronomique (INRA), Laboratoire de génie chimique [ancien site de Basso-Cambo] (LGC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Réseau Thématique de Recherche Avancée Sciences et Technologies pour l'Aéronautique et l'Espace, Partenaires INRAE, Laboratoire de chimie de coordination (LCC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Fondation STAE (Sciences et Technologies pour l'Aeronautique et l'Espace) under the acronym 'MAISOE' (Microlaboratoires d'Analyses In Situ pour des Observatoires Environnementaux), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), and Institut National Polytechnique de Toulouse - INPT (FRANCE)
- Subjects
Hg(II) trace determination ,General Chemical Engineering ,Analytical chemistry ,Electrodeposition mode comparison ,02 engineering and technology ,Glassy carbon ,01 natural sciences ,Modified electrode characterization ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,Electrochemistry ,Génie chimique ,Gold nanoparticles ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Anodic stripping detection ,Detection limit ,Chemistry ,010401 analytical chemistry ,Chronoamperometry ,021001 nanoscience & nanotechnology ,Amperometry ,0104 chemical sciences ,Colloidal gold ,Electrode ,Particle size ,Cyclic voltammetry ,0210 nano-technology - Abstract
International audience; Gold nanoparticles (AuNPs) were deposited on Glassy Carbon (GC) substrate by using three electrochemical techniques: Cyclic Voltammetry (CV), Chronoamperometry (CA) and Potentiostatic Double-Pulse (PDP). For each electrodeposition method, the resulting AuNPs-modified electrodes were characterized by CV in H2SO4 and Field Emission Gun Scanning Electron Microscopy (FEG-SEM). CA was found to be the best electrodeposition mode for controlling the morphology and the density of AuNPs. The modified electrodes were used for low Hg(II) concentration detection using Square Wave Anodic Stripping Voltammetry (SWASV). AuNPs obtained by CA afforded the best amperometric response while involving the lowest amount of charge during the electrodeposition step (QAu(III)). This analytical response is correlated to both the smallest particle size (ca. 17 nm in diameter) and the highest particle density (332 particles μm−2), thus displaying high electrode effective surface area. In these optimal conditions, using a Hg(II) preconcentration time of 300 s, the nanosensor array exhibited a linearity range from 0.80 to 9.9 nM with a sensitivity of 1.16 μA nM−1. A detection limit of 0.40 nM (s/n = 3) was reached.
- Published
- 2012
- Full Text
- View/download PDF
31. Olefin hydrogenation by ruthenium nanoparticles in ionic liquid media: Does size matter?
- Author
-
Vincent Collière, François Bayard, Margarida F. Costa Gomes, Catherine C. Santini, Yves Chauvin, Ajda Podgoršek, Paul S. Campbell, Jacinto Sá, Laboratoire de Chimie, Catalyse, Polymères et Procédés, R 5265 (C2P2), Centre National de la Recherche Scientifique (CNRS)-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)
- Subjects
Olefin fiber ,Inorganic chemistry ,Cyclohexene ,chemistry.chemical_element ,[CHIM.CATA]Chemical Sciences/Catalysis ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Heterogeneous catalysis ,01 natural sciences ,Catalysis ,0104 chemical sciences ,Ruthenium ,chemistry.chemical_compound ,chemistry ,Transition metal ,Ionic liquid ,Organic chemistry ,Physical and Theoretical Chemistry ,0210 nano-technology ,Selectivity ,ComputingMilieux_MISCELLANEOUS - Abstract
Tailor-made and size-controlled ruthenium nanoparticles, RuNPs, of three distinct sizes between 1 and 3 nm are generated from the decomposition of (η 4 -1,5-cyclooctadiene)(η 6 -1,3,5-cyclooctatriene)ruthenium(0) [Ru(COD)(COT)], under H 2 in 1-butyl-3-methylimidazolium bis(trifluoromethanesulphonyl)imide, C 1 C 4 ImNTf 2 , by simply varying experimental conditions. Catalytic hydrogenation of 1,3-cyclohexadiene, CYD, and cyclohexene, CYE, in C 1 C 4 ImNTf 2 , has been used as a probe for the relationship between size and catalytic performance (activity and selectivity) of RuNPs. To allow comparison between different reactions, all catalytic reaction mixtures were diligently prepared in order that the parameters such as substrate/catalyst and substrate/ionic liquid ratio, and therefore, viscosity and mass transport factors remained constant. It was found that the catalytic activity increases with the NP size, while high selectivity is only observed with the smaller NPs. In addition, the studied RuNPs exhibit a high level of recyclability with neither loss of activity nor significant agglomeration.
- Published
- 2010
- Full Text
- View/download PDF
32. An Organometallic Approach for Very Small Maghemite Nanoparticles: Synthesis, Characterization, and Magnetic Properties
- Author
-
Andrea Falqui, Marc Respaud, Pierre Lecante, Arnaud Glaria, Myrtil L. Kahn, Vincent Collière, and Bruno Chaudret
- Subjects
chemistry.chemical_classification ,Chemistry ,Spectrum Analysis ,Temperature ,Metal Nanoparticles ,Maghemite ,Nanoparticle ,engineering.material ,Atomic and Molecular Physics, and Optics ,Magnetics ,chemistry.chemical_compound ,Crystallinity ,Nuclear magnetic resonance ,Microscopy, Electron, Transmission ,Transmission electron microscopy ,Mössbauer spectroscopy ,engineering ,Physical chemistry ,Particle ,Particle Size ,Physical and Theoretical Chemistry ,Alkyl ,Tetrahydrofuran - Abstract
Maghemite (gamma-Fe(2)O(3)) nanoparticles stabilized by long-alkyl-chain amines are synthesized by using an organometallic approach. This method consists of the hydrolysis and oxidation of an organometallic precursor, Fe[N(SiMe(3))(2)](2), in the presence of amine ligands as stabilizing agent in an organic solvent, namely tetrahydrofuran or toluene. Whatever the experimental conditions, particles with a diameter of 2.8 nm are obtained. The use of high-resolution transmission electron microscopy and wide-angle X-ray scattering, together with Mössbauer spectroscopy and SQuId magnetometry, allows a complete characterization of these particles. Herein, we show that their structure is composed of a well-ordered core surrounded by a more disordered shell. The size of the latter varies from 0.65 to 0.50 nm depending on the experimental conditions and is of prime importance for the understanding of the magnetic properties. We demonstrate that the shorter the alkyl chain length of the amine 1) the better the crystallinity of the particle's core and 2) the stronger the interparticle interactions.
- Published
- 2008
- Full Text
- View/download PDF
33. Catalytic investigation of rhodium nanoparticles in hydrogenation of benzene and phenylacetylene
- Author
-
Pan Cheng, Claudine Blandy, Jean-Louis Pellegatta, Robert Choukroun, Bruno Chaudret, Vincent Collière, and Karine Philippot
- Subjects
Process Chemistry and Technology ,Catalyst support ,chemistry.chemical_element ,Heterogeneous catalysis ,Adiponitrile ,Catalyst poisoning ,Catalysis ,Rhodium ,chemistry.chemical_compound ,Phenylacetylene ,chemistry ,Organic chemistry ,Physical and Theoretical Chemistry ,Norbornene - Abstract
Nanoparticles of rhodium embedded in polyvinylpyrrolidone (PVP), as catalyst, were investigated in the hydrogenation of different substrates (benzene, phenylacetylene, norbornene, quinoline, adiponitrile). The solid was used as a heterogeneous catalyst or as a soluble heterogeneous catalyst in biphasic conditions (liquid/liquid) when the catalyst was dissolved in water. In both cases, the kinetics of the catalytic reaction were found to be zero-order in respect to the substrate and first-order with respect to hydrogen and catalyst. The higher hydrogenation reaction rate was found for benzene by using biphasic conditions. The [Rh-PVP] catalyst has shown an efficient activity for the catalytic hydrogenation of norbornene, quinoline and adiponitrile into norbornane, tetrahydroquinoline and 6-aminocapronitrile.
- Published
- 2002
- Full Text
- View/download PDF
34. ChemInform Abstract: Platinum N-Heterocyclic Carbene Nanoparticles as New and Effective Catalysts for the Selective Hydrogenation of Nitroaromatics
- Author
-
Vincent Collière, Bruno Chaudret, Karine Philippot, Patricia Lara, and Andrés Suárez
- Subjects
inorganic chemicals ,Reaction conditions ,organic chemicals ,chemistry.chemical_element ,Nanoparticle ,General Medicine ,Combinatorial chemistry ,Catalysis ,chemistry.chemical_compound ,chemistry ,Halogen ,heterocyclic compounds ,Platinum ,Carbene - Abstract
Functional groups such as hydroxy, benzyloxy, carbonyl, cyano, and halogens are tolerated under the present reaction conditions.
- Published
- 2014
- Full Text
- View/download PDF
35. Viologen-based dendritic macromolecular asterisks: synthesis and interplay with gold nanoparticles
- Author
-
Vincent Collière, Nadia Katir, Abdelkrim El Kadib, Mosto Bousmina, Jean-Pierre Majoral, Université Euro Méditerranéenne de Fès (UEMF), Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Hassan II Academy of Sciences and Technology, and Université Hassan II [Casablanca] (UH2MC)
- Subjects
Chemistry ,Metals and Alloys ,Nanotechnology ,Viologen ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Catalysis ,0104 chemical sciences ,3. Good health ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Colloidal gold ,Materials Chemistry ,Ceramics and Composites ,medicine ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,0210 nano-technology ,Macromolecule ,medicine.drug - Abstract
International audience; The viologen-skeleton reacts with a hydrazine-terminated cyclotriphosphazene core to provide novel dendritic macromolecular asterisks that efficiently exchange, deliver and stabilize gold nanoparticles for up to eight months.
- Published
- 2014
- Full Text
- View/download PDF
36. New procedure towards well-dispersed nickel oxide nanoparticles of controlled size
- Author
-
Bruno Toustou, Catherine Amiens, Vincent Collière, Marc Verelst, Marc Respaud, Nadège Cordente, Jean Marc Broto, and Bruno Chaudret
- Subjects
chemistry.chemical_classification ,Polyvinylpyrrolidone ,Chemistry ,Nickel oxide ,Composite number ,Nanoparticle ,chemistry.chemical_element ,Mineralogy ,General Chemistry ,Polymer ,Nickel ,Chemical engineering ,Transmission electron microscopy ,medicine ,Dispersion (chemistry) ,medicine.drug - Abstract
The synthesis of well-dispersed composite Ni/NiO nanoparticles of controlled size has been achieved in organic solution in the presence of polyvinylpyrrolidone, using biscycloocta-1,5-diene nickel as a precursor, upon controlling the water and dioxygen content of the reacting medium. The particles are characterised by magnetisation measurements, Transmission Electron Microscopy and Wide Angle X-ray Scattering. The oxidation of these particles into NiO nanoparticles can be achieved in mild conditions and preserves their dispersion in the polymer matrix.
- Published
- 2001
- Full Text
- View/download PDF
37. Synthesis and use of a novel SnO2 nanomaterial for gas sensing
- Author
-
Eric Viala, Céline Nayral, Vincent Collière, François Senocq, Pierre Fau, Bruno Chaudret, and André Maisonnat
- Subjects
Nanocomposite ,business.industry ,Doping ,Dispersity ,General Physics and Astronomy ,Nanoparticle ,chemistry.chemical_element ,Nanotechnology ,Surfaces and Interfaces ,General Chemistry ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Nanomaterials ,chemistry.chemical_compound ,Silicon nitride ,chemistry ,Chemical engineering ,Microelectronics ,business ,Palladium - Abstract
Decomposition of the organometallic precursor [Sn(NMe 2 ) 2 ] 2 in a controlled water/anisol mixture leads to the formation of monodisperse nanocomposite particles of Sn/SnO x . Full oxidation of the particles into SnO 2 occurs at 600°C without size or morphology change. These particles can be deposited onto silicon nitride covered microelectronic platforms and used as sensitive layers of gas sensors. Doping of the sensors with palladium can be achieved either by co-decomposition of organometallic precursors (doping in volume) or by deposition of palladium on preformed SnO 2 nanoparticles (doping in surface). The doped sensors display an unusually high sensitivity for CO sensing.
- Published
- 2000
- Full Text
- View/download PDF
38. Platinum N-heterocyclic carbene nanoparticles as new and effective catalysts for the selective hydrogenation of nitroaromatics
- Author
-
Bruno Chaudret, Andrés Suárez, Vincent Collière, Karine Philippot, Patricia Lara, Instituto de Investigaciones Químicas (IIQ) and Departamento de Química Inorgánica, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nanoparticle ,chemistry.chemical_element ,010402 general chemistry ,01 natural sciences ,Catalysis ,Inorganic Chemistry ,Metal ,chemistry.chemical_compound ,Organic chemistry ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,platinum ,Physical and Theoretical Chemistry ,Chemoselectivity ,010405 organic chemistry ,Chemistry ,Organic Chemistry ,Combinatorial chemistry ,3. Good health ,0104 chemical sciences ,carbenes ,chemoselectivity ,visual_art ,Halogen ,visual_art.visual_art_medium ,nanoparticles ,hydrogenation ,Selectivity ,Platinum ,Carbene - Abstract
In this communication, we report the first synthesis of Pt NPs stabilized with NHC ligands and their investigation as catalysts in the chemoselective hydrogenation of nitroarenes. The results in catalysis show that by a proper choice of the NHC stabilizer and the adjustment of the NHC/metal ratio, these NHC-capped Pt NPs exhibit high levels of activity and selectivity in the hydrogenation reactions. In particular, Pt NPs stabilized with 2 equiv. of IPr carbene (PtIPr0.2) catalyze the chemoselective reduction of a series of functionalized nitroarenes under mild conditions (1 bar H2, 30 °C). This catalyst tolerates the presence of a range of functional groups including hydroxyl, benzyloxy, carbonyl and olefinic moeities as well as halogens. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- Published
- 2014
- Full Text
- View/download PDF
39. PPH dendrimers grafted on silica nanoparticles: surface chemistry, characterization, silver colloids hosting and antibacterial activity
- Author
-
Anne-Marie Caminade, Pierre Fau, Julien Grimoud, Vincent Collière, Christine Roques, Cédric-Olivier Turrin, Aurélien Hameau, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de génie chimique [ancien site de Basso-Cambo] (LGC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie Chimique (LGC), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)
- Subjects
General Chemical Engineering ,Nanoparticle ,Polyphosphorhydrazone ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Silver nanoparticle ,chemistry.chemical_compound ,Colloid ,[CHIM.GENI]Chemical Sciences/Chemical engineering ,Poly(ethyleneglycol) ,Dendrimer ,Polymer chemistry ,PEG ratio ,Génie chimique ,Chemistry ,General Chemistry ,021001 nanoscience & nanotechnology ,Silica nanoparticles ,0104 chemical sciences ,Elemental analysis ,Antibacterial activity ,0210 nano-technology ,Silver oxide - Abstract
International audience; Polyphosphorhydrazone (PPH) dendrimers have been grafted on silica nanoparticles, and the surface functions of the dendrimers have been derivatized to phosphonates with lateral poly(ethyleneglycol) (PEG) chains. All materials have been thoroughly characterized by MAS NMR, FT-IR, electron microscopy, TGA and elemental analysis. These materials successfully hosted silver and silver oxide nanoparticles. The resulting composites exhibit antibacterial activity.
- Published
- 2013
- Full Text
- View/download PDF
40. Pyrene-tagged dendritic catalysts noncovalently grafted onto magnetic Co/C nanoparticles: an efficient and recyclable system for drug synthesis
- Author
-
Anne-Marie Caminade, Oliver Reiser, Michel Keller, Armelle Ouali, Jean-Pierre Majoral, Vincent Collière, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and Universität Regensburg (UR)
- Subjects
magnetic nanoparticles ,Phosphines ,Nanoparticle ,010402 general chemistry ,01 natural sciences ,Catalysis ,dendrimers ,chemistry.chemical_compound ,Polymer chemistry ,Recycling ,Magnetite Nanoparticles ,catalyst recycling ,Pyrenes ,010405 organic chemistry ,General Chemistry ,Cobalt ,General Medicine ,palladium ,Carbon ,0104 chemical sciences ,3. Good health ,Drug synthesis ,chemistry ,Chemical engineering ,Pharmaceutical Preparations ,Pyrene ,Suzuki coupling - Abstract
1521-3773
- Published
- 2013
- Full Text
- View/download PDF
41. Cp2Ti(dddse): a well known precursor for Se-containing donors
- Author
-
Christophe Faulmann, Vincent Collière, and Sandrine Vincendeau
- Subjects
chemistry.chemical_classification ,chemistry.chemical_compound ,Crystallography ,Chemistry ,Ligand ,Thiol ,Molecule ,General Materials Science ,General Chemistry ,Isostructural ,Condensed Matter Physics ,Ring (chemistry) ,Derivative (chemistry) - Abstract
Bis(η5-cyclopentadienyl)[5,6-dihydro-1,4-dithiine-2,3-diselenolato(2−)-κ2Se,Se′]titanium(IV), [Ti(C5H5)2(C4H4S2Se2)], is isostructural with the all-sulfur derivative Cp2Ti(dddt) [Guyon et al. (1994). Bull. Soc. Chim. Fr. 131, 217–226] (dddt2− = 5,6-dihydro-1,4-dithiine-2,3-dithiolate). There are two molecules in the asymmetric unit, and one ethylene group of the dddse2− ligand is found to be disordered in one of them. As in Cp2Ti(dddt), the TiSe2C2 ring is folded along the Se⋯Se axis by 49.75 (3) and 53.29 (3)° in the two independent molecules.
- Published
- 2003
- Full Text
- View/download PDF
42. Self-Assembly of ZnO Nanoparticles - An NMR Spectroscopic Study
- Author
-
Yannick Coppel, Christophe Mingotaud, André Maisonnat, Myrtil L. Kahn, Grégory Spataro, Bruno Chaudret, Vincent Collière, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique et chimie des nano-objets (LPCNO), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Interactions moléculaires et réactivité chimique et photochimique (IMRCP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Institut Ecologie et Environnement (INEE), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), and Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Superlattices ,Carboxylic acid ,Inorganic chemistry ,Nanoparticle ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Inorganic Chemistry ,chemistry.chemical_compound ,NMR spectroscopy ,Polymer chemistry ,[CHIM]Chemical Sciences ,Ammonium ,Carboxylate ,chemistry.chemical_classification ,Nuclear magnetic resonance spectroscopy ,021001 nanoscience & nanotechnology ,Surface chemistry ,0104 chemical sciences ,chemistry ,Proton NMR ,ZnO ,Nanoparticles ,Amine gas treating ,0210 nano-technology ,Two-dimensional nuclear magnetic resonance spectroscopy - Abstract
International audience; The role of ligands (i.e. hexadecylamine, dodecylamine, or octylamine associated with oleic acid) on the formation of ZnO nanoparticle superlattice structures (NSSs) was investigated by NMR spectroscopy in C7D8. This full study demonstrates that ion‐paired ammonium carboxylates play a crucial role in NSS formation. Using different NMR spectroscopic experiments, such as 1H NMR, pulsed field gradient spin‐echo (PGSE) NMR, and NOESY, we evidenced that the introduction of long‐alkyl‐chain carboxylic acid molecules into a colloidal solution of ZnO nanoparticles (NPs) stabilized by amine ligands leads to rearrangement of the amines on the surface of the NPs with the formation of ammonium carboxylate. This NMR spectroscopic study evidences the dependence of the nature of the ligands adsorbed on the NP surface on the colloid concentration. At high concentration, several ligand shells with a lot of ion‐paired ammonium carboxylate and inclusion of amine are observed. At low concentration, the ion‐paired ammonium carboxylate shells are replaced by amine shells. This NMR spectroscopic study suggests that the driving force of NSS formation is the presence of ion‐paired ammonium carboxylate shells around the nanoparticle.
- Published
- 2012
- Full Text
- View/download PDF
43. Carbon-supported Ru and Pd nanoparticles: Efficient and recyclable catalysts for the aerobic oxidation of benzyl alcohol in water
- Author
-
Vincent Collière, Ana B. García, Eduardo J. Garcia-Suarez, Karine Philippot, Mar Tristany, University of Oviedo, Laboratoire de chimie de coordination (LCC), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Carbon materials ,Metal nanoparticles ,010402 general chemistry ,Heterogeneous catalysis ,01 natural sciences ,Aldehyde ,Catalysis ,Benzaldehyde ,chemistry.chemical_compound ,Organic chemistry ,General Materials Science ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,chemistry.chemical_classification ,010405 organic chemistry ,General Chemistry ,Condensed Matter Physics ,Combinatorial chemistry ,Nanomaterial-based catalyst ,0104 chemical sciences ,chemistry ,Mechanics of Materials ,Benzyl alcohol ,Alcohol oxidation ,Selectivity ,Recyclable catalysts - Abstract
International audience; Ru NPs and Pd NPs were firstly synthesized and further supported on mesoporous carbon materials. Spherical and homogenously dispersed MNPs displaying mean sizes in the range 1.2–2.2 nm were thus achieved. The catalytic activity as well as the recyclability of these carbon-supported Ru and Pd NPs in the aerobic oxidation of benzyl alcohol to benzaldehyde in water was investigated, showing excellent conversions and high selectivity to the aldehyde. The selectivity towards aldehyde is particularly relevant since usually the oxidation of primary alcohols in water mainly yields the carboxylic acid. Moreover, these nanocatalysts present good recyclability in terms of conversion with up to eight successive reaction cycles. However, the selectivity to the aldehyde decreased, in some cases significantly, after the third cycle. The catalytic activity of these systems was found to be influenced by the hydrophilicity of the carbon support surface. However, the significance of this influence depends on the ligand used to stabilize the MNPs.
- Published
- 2012
- Full Text
- View/download PDF
44. Alkyl sulfonated diphosphines-stabilized ruthenium nanoparticles as efficient nanocatalysts in hydrogenation reactions in biphasic media
- Author
-
Eric Monflier, Alain Roucoux, Hervé Bricout, Katia Fajerwerg, Karine Philippot, Vincent Collière, Audrey Denicourt-Nowicki, Miguel Guerrero, Laboratoire de chimie de coordination (LCC), Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Organométalliques: Matériaux et Catalyse, Université européenne de Bretagne - European University of Brittany (UEB)-Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), UCCS Équipe Catalyse Supramoléculaire, Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), and Centrale Lille Institut (CLIL)-Université d'Artois (UA)-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Lille-Centrale Lille Institut (CLIL)-Université d'Artois (UA)-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Lille
- Subjects
chemistry.chemical_element ,010402 general chemistry ,01 natural sciences ,Catalysis ,Ruthenium ,Styrene ,chemistry.chemical_compound ,Diphosphines ,Polymer chemistry ,Organic chemistry ,Alkyl ,Sulfonated diphosphine ,chemistry.chemical_classification ,Aqueous solution ,010405 organic chemistry ,Water ,General Chemistry ,[CHIM.CATA]Chemical Sciences/Catalysis ,Nanomaterial-based catalyst ,0104 chemical sciences ,chemistry ,Nanoparticles ,Hydrogenation ,Biphasic catalysis ,Acetophenone - Abstract
International audience; The organometallic synthesis of ruthenium nanoparticles stabilized by water-soluble alkyl sulfonated diphosphines as ligands is described for the first time. After isolation, the so-obtained nanoparticles could be easily dispersed into water giving rise to stable aqueous colloidal solutions without precipitation over the course of several months. The catalytic behaviour of these aqueous colloidal solutions has been investigated in the hydrogenation of unsaturated substrates (tetradecene, styrene and acetophenone) in biphasic liquid-liquid conditions, showing interesting results in terms of reactivity. Interestingly, small structural differences in the backbone of the diphosphine ligands influence the catalytic activity of these nanocatalysts. In addition, preliminary tests of recycling showed promising results with neither loss of activity or significant precipitation.
- Published
- 2012
- Full Text
- View/download PDF
45. Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: Application to Hg(II) trace analysis
- Author
-
Philippe Behra, Teddy Hezard, David Evrard, Katia Fajerwerg, Pierre Gros, Vincent Collière, Chimie Agro-Industrielle (CAI), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole nationale supérieure des ingénieurs en arts chimiques et technologiques-Institut National de la Recherche Agronomique (INRA), Laboratoire de génie chimique [ancien site de Basso-Cambo] (LGC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Réseau Thématique de Recherche Avancée Sciences et Technologies pour l'Aéronautique et l'Espace, Partenaires INRAE, Laboratoire de chimie de coordination (LCC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie de Toulouse (ICT-FR 2599), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Foundation STAE (Sciences et Technologies pour l'Aeronautique et l'Espace) under the acronym 'MAISOE' (Microlaboratoires d'Analyses In Situ pour des Observatoires Environnementaux), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut National de la Recherche Agronomique - INRA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
Cyclic voltammetry ,Scanning electron microscope ,General Chemical Engineering ,Hg(II) trace analysis ,Analytical chemistry ,02 engineering and technology ,Glassy carbon ,Electrochemistry ,01 natural sciences ,Analytical Chemistry ,Electrodeposition ,[SDV.IDA]Life Sciences [q-bio]/Food engineering ,Génie chimique ,Gold nanoparticles ,[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering ,Field emission gun ,Detection limit ,Chemistry ,010401 analytical chemistry ,021001 nanoscience & nanotechnology ,Chimie de coordination ,0104 chemical sciences ,Modified electrodes ,Colloidal gold ,Electrode ,0210 nano-technology - Abstract
International audience; The electrochemical determination of Hg(II) at trace level using gold nanoparticles–modified glassy carbon (AuNPs–GC) electrodes is described. Starting from HAuCl4 in NaNO3, gold nanoparticles (AuNPs) were deposited onto Glassy Carbon (GC) electrodes using Cyclic Voltammetry (CV). Different deposits were obtained by varying the global charge consumed during the whole electroreduction step, depending on the number of cyclic potential scans (N). AuNPs were characterized as a function of the charge using both CV in H2SO4 and Field Emission Gun Scanning Electron Microscopy (FEG-SEM). The AuNPs–GC electrodes were then applied to determine low Hg(II) concentrations using Square Wave Anodic Stripping Voltammetry (SWASV). The AuNPs–GC electrodes provided significantly improved performances in Hg(II) determination compared to unmodified GC and bare Au electrodes. It was shown that the physico-chemical properties of the deposits are correlated to the performances of the AuNPs–GC electrode with respect to Hg(II) assay. The best results were obtained for four electrodeposition cyclic scans, where small-sized particles (36 ± 13 nm) with high density (73 particles μm−2) were obtained. Under these conditions, a linearity range from 0.64 to 4.00 nM and a limit of detection of 0.42 nM were obtained.
- Published
- 2012
- Full Text
- View/download PDF
46. (BETS)2[Fe(tdas)2]2: a new metal in the molecular conductor family
- Author
-
Christophe Faulmann, Patrick Cassoux, Paola Deplano, Luca Pilia, Isabelle Malfant, Vincent Collière, and Maria Laura Mercuri
- Subjects
Bicyclic molecule ,Stereochemistry ,Dimer ,General Medicine ,Crystal structure ,General Biochemistry, Genetics and Molecular Biology ,Conductor ,Metal ,chemistry.chemical_compound ,Crystallography ,chemistry ,Intermolecular interaction ,visual_art ,visual_art.visual_art_medium ,Molecule ,Diazo - Abstract
The structure of bis[4,5-ethylenedithio-2-(4,5-ethylenedithio-1,3-diselenacyclopent-4-en-2-ylidene)-1,3-diselenacyclopent-4-enium] bis(mu-1,2,5-thiadiazole-3,4-dithiolato-kappa3S4,S5:S4)bis[(1,2,5-thiadiazole-3,4-dithiolato-kappa2S4,S5)iron(III)], (BETS)(2)[Fe(tdas)(2)](2) [BETS is alternatively called bis(ethylenedithio)tetraselenafulvalenium] or (C(10)H(8)S(4)Se(4))(2)[(Fe(C(2)N(2)S(3))(2))(2)], consists of segregated columns of dimers of BETS and columns of dimers of [Fe(tdas)(2)]. Each dimer displays inversion symmetry. Numerous chalcogen-chalcogen contacts are observed within and between the columns, producing a network of interactions responsible for the metal-like behaviour of the compound.
- Published
- 2002
- Full Text
- View/download PDF
47. Urea-stabilized air-stable Pt nanoparticles for thin film deposition
- Author
-
Yannick Coppel, André Maisonnat, Vincent Collière, Virginie Latour, Pierre Fau, and Bruno Chaudret
- Subjects
Silicon ,Materials science ,Inorganic chemistry ,Nanoparticle ,chemistry.chemical_element ,Metal Nanoparticles ,complex mixtures ,Catalysis ,chemistry.chemical_compound ,Colloid ,Materials Chemistry ,Urea ,Colloids ,Thin film ,Amines ,Platinum ,Carbon Monoxide ,Air ,Metals and Alloys ,Substrate (chemistry) ,General Chemistry ,Hydrocarbons ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,Oleic acid ,chemistry ,Chemical engineering ,Ceramics and Composites ,lipids (amino acids, peptides, and proteins) ,Amine gas treating ,Carbonylation ,Oxidation-Reduction ,Oleic Acid - Abstract
The reduction of [Pt(COD)(CH3)2] with CO in the presence of hexadecylamine (HDA) and oleic acid (OlAc) leads to amine carbonylation and formation of an air-stable colloidal solution of N,N′-bis(hexadecyl)urea-stabilized Pt(0) nanoparticles. These air-stable colloidal solutions can be used to form thin films of Pt nanoparticles on a silicon substrate.
- Published
- 2010
48. Dendritic structures within dendritic structures: Dendrimer-induced formation and self-assembly of nanoparticle networks
- Author
-
Anne-Marie Caminade, Vincent Collière, Rosa María Sebastián, Elena Badetti, Jean-Pierre Majoral, and Grégory Franc
- Subjects
Microscopy ,X-Ray Emission ,Dendrimers ,Materials science ,Macrocyclic Compounds ,Spectrometry ,Supramolecular chemistry ,Nanoparticle ,Spectrometry, X-Ray Emission ,Nanotechnology ,Settore CHIM/06 - Chimica Organica ,Electron ,Microscopy, Electron, Transmission ,Nanoparticles ,Materials Science (all) ,Dendrimer ,Transmission ,General Materials Science ,Self-assembly ,Pt nanoparticles - Abstract
15-Membered tri-olefinic azamacrocycles as end-groups of phosphorus-containing dendrimers from generation 1 to 4 are used for obtaining Pt nanoparticles in mild conditions; remarkable and unprecedented branched supramolecular assemblies composed of dendrimers and coalesced Pt nanoparticles are obtained, which become larger for higher dendrimer generations, affording for the first time a very unique organization of organic dendritic structures interweaved with inorganic dendritic structures.
- Published
- 2009
49. Size- and Shape-Control of Crystalline Zinc Oxyde Nanoparticles: A New Organometallic Synhtetic Method
- Author
-
Myrtil L. Kahn, Bruno Chaudret, Vincent Collière, André Maisonnat, Miguel Monge, and François Senocq
- Subjects
Materials science ,Inorganic chemistry ,Nanoparticle ,chemistry.chemical_element ,Zinc ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Biomaterials ,Solvent ,Colloid ,chemistry ,Transmission electron microscopy ,Monolayer ,Electrochemistry ,Nanorod ,Luminescence - Abstract
A novel organometallic synthetic method has been developed for the preparation of crystalline ZnO nanoparticles of controlled size and shape. Isotropic nanoparticles with a mean size between 3 and 6 nm and nanorods with a mean diameter of 3-4 nm and length up to 120 nm have been obtained in this way. This synthetic method takes advantage of the exothermic reaction of the precursor Zn(c-C6H11)2 (1) toward moisture and air and involves the presence of long-alkyl-chain amines as stabilizing ligands. The influence of the different experimental parameters (concentration, solvent, nature of the ligand, time, and temperature) on the size and shape of the ZnO nanoparticles has been studied, together with the mechanism of their formation, by NMR spectroscopy, transmission electron microscopy, and X-ray diffraction techniques. The nanoparticles prepared in this way can be dissolved in most of the common organic solvents, forming colloidal solutions. The surface state of the nanoparticles as well as the possibility of forming luminescent solutions from which regular monolayers can be deposited are also reported. © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
- Published
- 2005
50. Influence of amines on the size control of in situ synthesized ruthenium nanoparticles in imidazolium ionic liquids
- Author
-
Bruno Chaudret, Bernard Fenet, Catherine C. Santini, Gorka Salas, Pier-Francesco Fazzini, Karine Philippot, and Vincent Collière
- Subjects
Inorganic Chemistry ,In situ ,chemistry.chemical_compound ,chemistry ,Ionic liquid ,Inorganic chemistry ,Polymer chemistry ,chemistry.chemical_element ,Nanoparticle ,Decomposition ,Ruthenium - Abstract
Very stable suspensions of small sized (c.a. 1.2 nm) and homogeneously dispersed ruthenium nanoparticles (RuNPs) were obtained by decomposition, under H(2), of (η(4)-1,5-cyclooctadiene)(η(6)-1,3,5-cyclooctatriene)ruthenium(0), [Ru(COD)(COT)], in various imidazolium derived ionic liquids (ILs: [RMIm][NTf(2)] (R = C(n)H(2n+1) where n = 2; 4; 6; 8; 10) and in the presence of amines as ligands (1-octylamine, 1-hexadecylamine). These nanoparticles were compared to others stabilized either in pure ILs or by the same ligands in THF. NMR experiments ((13)C solution and DOSY) demonstrate that the amines are coordinated to the surface of the RuNPs. These RuNPs were investigated for the hydrogenation of aromatics and have shown a high level of recyclability (up to 10 cycles) with neither loss of activity nor significant agglomeration.
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.