122 results on '"Waterhouse RM"'
Search Results
2. Gene content evolution in the arthropods
- Author
-
Thomas, GWC, Dohmen, E, Hughes, DST, Murali, SC, Poelchau, M, Glastad, K, Anstead, CA, Ayoub, NA, Batterham, P, Bellair, M, Binford, GJ, Chao, H, Chen, YH, Childers, C, Dinh, H, Doddapaneni, HV, Duan, JJ, Dugan, S, Esposito, LA, Friedrich, M, Garb, J, Gasser, RB, Goodisman, MAD, Gundersen-Rindal, DE, Han, Y, Handler, AM, Hatakeyama, M, Hering, L, Hunter, WB, Ioannidis, P, Jayaseelan, JC, Kalra, D, Khila, A, Korhonen, PK, Lee, CE, Lee, SL, Li, Y, Lindsey, ARI, Mayer, G, McGregor, AP, McKenna, DD, Misof, B, Munidasa, M, Munoz-Torres, M, Muzny, DM, Niehuis, O, Osuji-Lacy, N, Palli, SR, Panfilio, KA, Pechmann, M, Perry, T, Peters, RS, Poynton, HC, Prpic, N-M, Qu, J, Rotenberg, D, Schal, C, Schoville, SD, Scully, ED, Skinner, E, Sloan, DB, Stouthamer, R, Strand, MR, Szucsich, NU, Wijeratne, A, Young, ND, Zattara, EE, Benoit, JB, Zdobnov, EM, Pfrender, ME, Hackett, KJ, Werren, JH, Worley, KC, Gibbs, RA, Chipman, AD, Waterhouse, RM, Bornberg-Bauer, E, Hahn, MW, Richards, S, Thomas, GWC, Dohmen, E, Hughes, DST, Murali, SC, Poelchau, M, Glastad, K, Anstead, CA, Ayoub, NA, Batterham, P, Bellair, M, Binford, GJ, Chao, H, Chen, YH, Childers, C, Dinh, H, Doddapaneni, HV, Duan, JJ, Dugan, S, Esposito, LA, Friedrich, M, Garb, J, Gasser, RB, Goodisman, MAD, Gundersen-Rindal, DE, Han, Y, Handler, AM, Hatakeyama, M, Hering, L, Hunter, WB, Ioannidis, P, Jayaseelan, JC, Kalra, D, Khila, A, Korhonen, PK, Lee, CE, Lee, SL, Li, Y, Lindsey, ARI, Mayer, G, McGregor, AP, McKenna, DD, Misof, B, Munidasa, M, Munoz-Torres, M, Muzny, DM, Niehuis, O, Osuji-Lacy, N, Palli, SR, Panfilio, KA, Pechmann, M, Perry, T, Peters, RS, Poynton, HC, Prpic, N-M, Qu, J, Rotenberg, D, Schal, C, Schoville, SD, Scully, ED, Skinner, E, Sloan, DB, Stouthamer, R, Strand, MR, Szucsich, NU, Wijeratne, A, Young, ND, Zattara, EE, Benoit, JB, Zdobnov, EM, Pfrender, ME, Hackett, KJ, Werren, JH, Worley, KC, Gibbs, RA, Chipman, AD, Waterhouse, RM, Bornberg-Bauer, E, Hahn, MW, and Richards, S
- Abstract
BACKGROUND: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. RESULTS: Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. CONCLUSIONS: These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.
- Published
- 2020
3. Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution (vol 112, pg E5907, 2015)
- Author
-
Chen, X-G, Jiang, X, Gu, J, Xu, M, Wu, Y, Deng, Y, Zhang, C, Bonizzoni, M, Dermauw, W, Vontas, J, Armbruster, P, Huang, X, Yang, Y, Zhang, H, He, W, Peng, H, Liu, Y, Wu, K, Chen, J, Lirakis, M, Topalis, P, Van Leeuwen, T, Hall, AB, Thorpe, C, Mueller, RL, Sun, C, Waterhouse, RM, Yan, G, Tu, ZJ, Fang, X, and James, AA
- Published
- 2016
- Full Text
- View/download PDF
4. Highly evolvable malaria vectors: The genomes of 16 Anopheles mosquitoes
- Author
-
Neafsey, DE, Waterhouse, RM, Abai, MR, Aganezov, SS, Alekseyev, MA, Allen, JE, Amon, J, Arcà, B, Arensburger, P, Artemov, G, Assour, LA, Basseri, H, Berlin, A, Birren, BW, Blandin, SA, Brockman, AI, Burkot, TR, Burt, A, Chan, CS, Chauve, C, Chiu, JC, Christensen, M, Costantini, C, Davidson, VLM, Deligianni, E, Dottorini, T, Dritsou, V, Gabriel, SB, Guelbeogo, WM, Hall, AB, Han, MV, Hlaing, T, Hughes, DST, Jenkins, AM, Jiang, X, Jungreis, I, Kakani, EG, Kamali, M, Kemppainen, P, Kennedy, RC, Kirmitzoglou, IK, Koekemoer, LL, Laban, N, Langridge, N, Lawniczak, MKN, Lirakis, M, Lobo, NF, Lowy, E, MacCallum, RM, Mao, C, Maslen, G, Mbogo, C, McCarthy, J, Michel, K, Mitchell, SN, Moore, W, Murphy, KA, Naumenko, AN, Nolan, T, Novoa, EM, O'Loughlin, S, Oringanje, C, Oshaghi, MA, Pakpour, N, Papathanos, PA, Peery, AN, Povelones, M, Prakash, A, Price, DP, Rajaraman, A, Reimer, LJ, Rinker, DC, Rokas, A, Russell, TL, Sagnon, N, Sharakhova, MV, Shea, T, Simão, FA, Simard, F, Slotman, MA, Somboon, P, Stegniy, V, Struchiner, CJ, and Thomas, GWC
- Abstract
© 2015, american association for the advancement of science. All rigths reserved. Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ∼100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.
- Published
- 2015
- Full Text
- View/download PDF
5. Mosquito biology. Evolution of sexual traits influencing vectorial capacity in anopheline mosquitoes
- Author
-
Mitchell, Sn, Kakani, Evdoxia, South, A, Howell, Pi, Waterhouse, Rm, and Catteruccia, Flaminia
- Subjects
Male ,Anopheles gambiae/classification/physiology ,Biological Transport ,Anopheles/classification/physiology ,Biological Evolution ,Oogenesis/physiology ,Malaria/parasitology/transmission ,Insect Vectors/physiology ,Oviposition/physiology ,Ecdysterone/metabolism ,Mating Preference, Animal/physiology ,Animals ,ddc:576.5 ,Female ,Phylogeny - Abstract
The availability of genome sequences from 16 anopheline species provides unprecedented opportunities to study the evolution of reproductive traits relevant for malaria transmission. In Anopheles gambiae, a likely candidate for sexual selection is male 20-hydroxyecdysone (20E). Sexual transfer of this steroid hormone as part of a mating plug dramatically changes female physiological processes intimately tied to vectorial capacity. By combining phenotypic studies with ancestral state reconstructions and phylogenetic analyses, we show that mating plug transfer and male 20E synthesis are both derived characters that have coevolved in anophelines, driving the adaptation of a female 20E-interacting protein that promotes oogenesis via mechanisms also favoring Plasmodium survival. Our data reveal coevolutionary dynamics of reproductive traits between the sexes likely to have shaped the ability of anophelines to transmit malaria.
- Published
- 2015
6. Genome sequence of the Asian tiger mosquito, aedes albopictus, reveals insights into its biology, genetics, and evolution
- Author
-
Chen, XG, Jiang, X, Gu, J, Xu, M, Wu, Y, Deng, Y, Zhang, C, Bonizzoni, M, Dermauw, W, Vontas, J, Armbruster, P, Huang, X, Yang, Y, Zhang, H, He, W, Peng, H, Liu, Y, Wu, K, Chen, J, Lirakisi, M, Topalis, P, Van Leeuwen, T, Hall, AB, Thorpe, C, Mueller, RL, Sun, C, Waterhouse, RM, Yan, G, Tu, ZJ, Fang, X, James, AA, Chen, XG, Jiang, X, Gu, J, Xu, M, Wu, Y, Deng, Y, Zhang, C, Bonizzoni, M, Dermauw, W, Vontas, J, Armbruster, P, Huang, X, Yang, Y, Zhang, H, He, W, Peng, H, Liu, Y, Wu, K, Chen, J, Lirakisi, M, Topalis, P, Van Leeuwen, T, Hall, AB, Thorpe, C, Mueller, RL, Sun, C, Waterhouse, RM, Yan, G, Tu, ZJ, Fang, X, and James, AA
- Abstract
The Asian tiger mosquito, Aedes albopictus, is a highly successful invasive species that transmits a number of human viral diseases, including dengue and Chikungunya fevers. This species has a large genome with significant population-based size variation. The complete genome sequence was determined for the Foshan strain, an established laboratory colony derived from wild mosquitoes from southeastern China, a region within the historical range of the origin of the species. The genome comprises 1,967 Mb, the largest mosquito genome sequenced to date, and its size results principally from an abundance of repetitive DNA classes. In addition, expansions of the numbers of members in gene families involved in insecticideresistance mechanisms, diapause, sex determination, immunity, and olfaction also contribute to the larger size. Portions of integrated flavivirus-like genomes support a shared evolutionary history of association of these viruses with their vector. The large genome repertory may contribute to the adaptability and success of Ae. albopictus as an invasive species.
- Published
- 2015
7. Lucilia cuprina genome unlocks parasitic fly biology to underpin future interventions
- Author
-
Anstead, CA, Korhonen, PK, Young, ND, Hall, RS, Jex, AR, Murali, SC, Hughes, DST, Lee, SF, Perry, T, Stroehlein, AJ, Ansell, BRE, Breugelmans, B, Hofmann, A, Qu, J, Dugan, S, Lee, SL, Chao, H, Dinh, H, Han, Y, Doddapaneni, HV, Worley, KC, Muzny, DM, Ioannidis, P, Waterhouse, RM, Zdobnov, EM, James, PJ, Bagnall, NH, Kotze, AC, Gibbs, RA, Richards, S, Batterham, P, Gasser, RB, Anstead, CA, Korhonen, PK, Young, ND, Hall, RS, Jex, AR, Murali, SC, Hughes, DST, Lee, SF, Perry, T, Stroehlein, AJ, Ansell, BRE, Breugelmans, B, Hofmann, A, Qu, J, Dugan, S, Lee, SL, Chao, H, Dinh, H, Han, Y, Doddapaneni, HV, Worley, KC, Muzny, DM, Ioannidis, P, Waterhouse, RM, Zdobnov, EM, James, PJ, Bagnall, NH, Kotze, AC, Gibbs, RA, Richards, S, Batterham, P, and Gasser, RB
- Abstract
Lucilia cuprina is a parasitic fly of major economic importance worldwide. Larvae of this fly invade their animal host, feed on tissues and excretions and progressively cause severe skin disease (myiasis). Here we report the sequence and annotation of the 458-megabase draft genome of Lucilia cuprina. Analyses of this genome and the 14,544 predicted protein-encoding genes provide unique insights into the fly's molecular biology, interactions with the host animal and insecticide resistance. These insights have broad implications for designing new methods for the prevention and control of myiasis.
- Published
- 2015
8. The genomes of two key bumblebee species with primitive eusocial organization.
- Author
-
Sadd, BM, Barribeau, SM, Bloch, G, de Graaf, DC, Dearden, P, Elsik, CG, Gadau, J, Grimmelikhuijzen, CJP, Hasselmann, M, Lozier, JD, Robertson, HM, Smagghe, G, Stolle, E, Van Vaerenbergh, M, Waterhouse, RM, Bornberg-Bauer, E, Klasberg, S, Bennett, AK, Câmara, F, Guigó, R, Hoff, K, Mariotti, M, Munoz-Torres, M, Murphy, T, Santesmasses, D, Amdam, GV, Beckers, M, Beye, M, Biewer, M, Bitondi, MMG, Blaxter, ML, Bourke, AFG, Brown, MJF, Buechel, SD, Cameron, R, Cappelle, K, Carolan, JC, Christiaens, O, Ciborowski, KL, Clarke, DF, Colgan, TJ, Collins, DH, Cridge, AG, Dalmay, T, Dreier, S, du Plessis, L, Duncan, E, Erler, S, Evans, J, Falcon, T, Flores, K, Freitas, FCP, Fuchikawa, T, Gempe, T, Hartfelder, K, Hauser, F, Helbing, S, Humann, FC, Irvine, F, Jermiin, LS, Johnson, CE, Johnson, RM, Jones, AK, Kadowaki, T, Kidner, JH, Koch, V, Köhler, A, Kraus, FB, Lattorff, HMG, Leask, M, Lockett, GA, Mallon, EB, Antonio, DSM, Marxer, M, Meeus, I, Moritz, RFA, Nair, A, Näpflin, K, Nissen, I, Niu, J, Nunes, FMF, Oakeshott, JG, Osborne, A, Otte, M, Pinheiro, DG, Rossié, N, Rueppell, O, Santos, CG, Schmid-Hempel, R, Schmitt, BD, Schulte, C, Simões, ZLP, Soares, MPM, Swevers, L, Winnebeck, EC, Wolschin, F, Yu, N, Zdobnov, EM, Aqrawi, PK, Blankenburg, KP, Coyle, M, Francisco, L, Hernandez, AG, Holder, M, Hudson, ME, Jackson, L, Jayaseelan, J, Joshi, V, Kovar, C, Lee, SL, Mata, R, Mathew, T, Newsham, IF, Ngo, R, Okwuonu, G, Pham, C, Pu, L-L, Saada, N, Santibanez, J, Simmons, D, Thornton, R, Venkat, A, Walden, KKO, Wu, Y-Q, Debyser, G, Devreese, B, Asher, C, Blommaert, J, Chipman, AD, Chittka, L, Fouks, B, Liu, J, O'Neill, MP, Sumner, S, Puiu, D, Qu, J, Salzberg, SL, Scherer, SE, Muzny, DM, Richards, S, Robinson, GE, Gibbs, RA, Schmid-Hempel, P, Worley, KC, Sadd, BM, Barribeau, SM, Bloch, G, de Graaf, DC, Dearden, P, Elsik, CG, Gadau, J, Grimmelikhuijzen, CJP, Hasselmann, M, Lozier, JD, Robertson, HM, Smagghe, G, Stolle, E, Van Vaerenbergh, M, Waterhouse, RM, Bornberg-Bauer, E, Klasberg, S, Bennett, AK, Câmara, F, Guigó, R, Hoff, K, Mariotti, M, Munoz-Torres, M, Murphy, T, Santesmasses, D, Amdam, GV, Beckers, M, Beye, M, Biewer, M, Bitondi, MMG, Blaxter, ML, Bourke, AFG, Brown, MJF, Buechel, SD, Cameron, R, Cappelle, K, Carolan, JC, Christiaens, O, Ciborowski, KL, Clarke, DF, Colgan, TJ, Collins, DH, Cridge, AG, Dalmay, T, Dreier, S, du Plessis, L, Duncan, E, Erler, S, Evans, J, Falcon, T, Flores, K, Freitas, FCP, Fuchikawa, T, Gempe, T, Hartfelder, K, Hauser, F, Helbing, S, Humann, FC, Irvine, F, Jermiin, LS, Johnson, CE, Johnson, RM, Jones, AK, Kadowaki, T, Kidner, JH, Koch, V, Köhler, A, Kraus, FB, Lattorff, HMG, Leask, M, Lockett, GA, Mallon, EB, Antonio, DSM, Marxer, M, Meeus, I, Moritz, RFA, Nair, A, Näpflin, K, Nissen, I, Niu, J, Nunes, FMF, Oakeshott, JG, Osborne, A, Otte, M, Pinheiro, DG, Rossié, N, Rueppell, O, Santos, CG, Schmid-Hempel, R, Schmitt, BD, Schulte, C, Simões, ZLP, Soares, MPM, Swevers, L, Winnebeck, EC, Wolschin, F, Yu, N, Zdobnov, EM, Aqrawi, PK, Blankenburg, KP, Coyle, M, Francisco, L, Hernandez, AG, Holder, M, Hudson, ME, Jackson, L, Jayaseelan, J, Joshi, V, Kovar, C, Lee, SL, Mata, R, Mathew, T, Newsham, IF, Ngo, R, Okwuonu, G, Pham, C, Pu, L-L, Saada, N, Santibanez, J, Simmons, D, Thornton, R, Venkat, A, Walden, KKO, Wu, Y-Q, Debyser, G, Devreese, B, Asher, C, Blommaert, J, Chipman, AD, Chittka, L, Fouks, B, Liu, J, O'Neill, MP, Sumner, S, Puiu, D, Qu, J, Salzberg, SL, Scherer, SE, Muzny, DM, Richards, S, Robinson, GE, Gibbs, RA, Schmid-Hempel, P, and Worley, KC
- Abstract
BACKGROUND: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. RESULTS: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. CONCLUSIONS: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation.
- Published
- 2015
9. The genome of the model beetle and pest tribolium castaneum
- Author
-
Richards, S, Gibbs, RA, Weinstock, GM, Brown, SJ, Denell, R, Beeman, RW, Gibbs, R, Bucher, G, Friedrich, M, Grimmelikhuijzen, CJ, Klingler, M, Lorenzen, M, Roth, S, Schröder, R, Tautz, D, Zdobnov, EM, Muzny, D, Attaway, T, Bell, S, Buhay, CJ, Chandrabose, MN, Chavez, D, Clerk-Blankenburg, KP, Cree, A, Dao, M, Davis, C, Chacko, J, Dinh, H, Dugan-Rocha, S, Fowler, G, Garner, TT, Garnes, J, Gnirke, A, Hawes, A, Hernandez, J, Hines, S, Holder, M, Hume, J, Jhangiani, SN, Joshi, V, Khan, ZM, Jackson, L, Kovar, C, Kowis, A, Lee, S, Lewis, LR, Margolis, J, Morgan, M, Nazareth, LV, Nguyen, N, Okwuonu, G, Parker, D, Ruiz, SJ, Santibanez, J, Savard, J, Scherer, SE, Schneider, B, Sodergren, E, Vattahil, S, Villasana, D, White, CS, Wright, R, Park, Y, Lord, J, Oppert, B, Brown, S, Wang, L, Weinstock, G, Liu, Y, Worley, K, Elsik, CG, Reese, JT, Elhaik, E, Landan, G, Graur, D, Arensburger, P, Atkinson, P, Beidler, J, Demuth, JP, Drury, DW, Du, YZ, Fujiwara, H, Maselli, V, Osanai, M, Robertson, HM, Tu, Z, Wang, JJ, Wang, S, Song, H, Zhang, L, Werner, D, Stanke, M, Morgenstern, B, Solovyev, V, Kosarev, P, Brown, G, Chen, HC, Ermolaeva, O, Hlavina, W, Kapustin, Y, Kiryutin, B, Kitts, P, Maglott, D, Pruitt, K, Sapojnikov, V, Souvorov, A, Mackey, AJ, Waterhouse, RM, Wyder, S, Kriventseva, EV, Kadowaki, T, Bork, P, Aranda, M, Bao, R, Beermann, A, Berns, N, Bolognesi, R, Bonneton, F, Bopp, D, Butts, T, Chaumot, A, Denell, RE, Ferrier, DE, Gordon, CM, Jindra, M, Lan, Q, Lattorff, HM, Laudet, V, von Levetsow, C, Liu, Z, Lutz, R, Lynch, JA, da Fonseca, RN, Posnien, N, Reuter, R, Schinko, JB, Schmitt, C, Schoppmeier, M, Shippy, TD, Simonnet, F, Marques-Souza, H, Tomoyasu, Y, Trauner, J, Van der Zee, M, Vervoort, M, Wittkopp, N, Wimmer, EA, Yang, X, Jones, AK, Sattelle, DB, Ebert, PR, Nelson, D, Scott, JG, Muthukrishnan, S, Kramer, KJ, Arakane, Y, Zhu, Q, Hogenkamp, D, Dixit, R, Jiang, H, Zou, Z, Marshall, J, Elpidina, E, Vinokurov, K, Oppert, C, Evans, J, Lu, Z, Zhao, P, Sumathipala, N, Altincicek, B, Vilcinskas, A, Williams, M, Hultmark, D, Hetru, C, Hauser, F, Cazzamali, G, Williamson, M, Li, B, Tanaka, Y, Predel, R, Neupert, S, Schachtner, J, Verleyen, P, Raible, F, Walden, KK, Angeli, S, Forêt, S, Schuetz, S, Maleszka, R, Miller, SC, Grossmann, D, MDC Library, and Zdobnov, Evgeny
- Subjects
0106 biological sciences ,Repetitive Sequences, Nucleic Acid/genetics ,Insecticides ,Proteome ,Genome, Insect ,Cytochrome P-450 Enzyme System/genetics ,Genes, Insect ,Insect ,Receptors, Odorant ,01 natural sciences ,Genome ,Receptors, G-Protein-Coupled ,G-Protein-Coupled Receptors ,Genome, Insect/ genetics ,Oogenesis ,Cytochrome P-450 Enzyme System ,RNA interference ,Odorant Receptors ,Caenorhabditis elegans ,Insect Genome ,Phylogeny ,media_common ,Genetics ,ddc:616 ,0303 health sciences ,Base Composition ,Neurotransmitter Agents ,Tribolium ,Multidisciplinary ,Neurotransmitter Agents/genetics ,Receptors, Odorant/genetics ,Vision, Ocular/genetics ,Telomere ,Insecticides/pharmacology ,DNA Transposable Elements/genetics ,Proteome/genetics ,Genes, Insect/ genetics ,Oogenesis/genetics ,Taste ,RNA Interference ,Growth and Development ,Drosophila melanogaster ,animal structures ,Nucleic Acid Repetitive Sequences ,Taste/genetics ,media_common.quotation_subject ,570 Life Sciences ,Biology ,010603 evolutionary biology ,610 Medical Sciences, Medicine ,03 medical and health sciences ,Humans ,Insect Genes ,Ocular Vision ,Animals ,Tribolium/classification/embryology/ genetics/physiology ,Red flour beetle ,Gene ,Drosophila ,Vision, Ocular ,030304 developmental biology ,Repetitive Sequences, Nucleic Acid ,Growth and Development/genetics ,Telomere/genetics ,Body Patterning ,fungi ,biology.organism_classification ,Body Patterning/genetics ,Cardiovascular and Metabolic Diseases ,DNA Transposable Elements ,Receptors, G-Protein-Coupled/genetics - Abstract
Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
- Published
- 2008
10. Finding the missing honey bee genes: Lessons learned from a genome upgrade
- Author
-
Elsik, CG, Worley, KC, Bennett, AK, Beye, M, Camara, F, Childers, CP, de Graaf, DC, Debyser, G, Deng, J, Devreese, B, Elhaik, E, Evans, JD, Foster, LJ, Graur, D, Guigo, R, Hoff, KJ, Holder, ME, Hudson, ME, Hunt, GJ, Jiang, H, Joshi, V, Khetani, RS, Kosarev, P, Kovar, CL, Ma, J, Maleszka, R, Moritz, RFA, Munoz-Torres, MC, Murphy, TD, Muzny, DM, Newsham, IF, Reese, JT, Robertson, HM, Robinson, GE, Rueppell, O, Solovyev, V, Stanke, M, Stolle, E, Tsuruda, JM, Vaerenbergh, MV, Waterhouse, RM, Weaver, DB, Whitfield, CW, Wu, Y, Zdobnov, EM, Zhang, L, Zhu, D, Gibbs, RA, Patil, S, Gubbala, S, Aqrawi, P, Arias, F, Bess, C, Blankenburg, KB, Brocchini, M, Buhay, C, Challis, D, Chang, K, Chen, D, Coleman, P, Drummond, J, English, A, Evani, U, Francisco, L, Fu, Q, Goodspeed, R, Haessly, TH, Hale, W, Han, H, Hu, Y, Jackson, L, Jakkamsetti, A, Jayaseelan, JC, Kakkar, N, Kalra, D, Kandadi, H, Lee, S, Li, H, Liu, Y, Macmil, S, Mandapat, CM, Mata, R, Mathew, T, Matskevitch, T, Munidasa, M, Nagaswamy, U, Najjar, R, Nguyen, N, Niu, J, Opheim, D, Palculict, T, Paul, S, Pellon, M, Perales, L, Pham, C, Pham, P, Pu, LL, Qi, S, Qu, J, Ren, Y, Elsik, CG, Worley, KC, Bennett, AK, Beye, M, Camara, F, Childers, CP, de Graaf, DC, Debyser, G, Deng, J, Devreese, B, Elhaik, E, Evans, JD, Foster, LJ, Graur, D, Guigo, R, Hoff, KJ, Holder, ME, Hudson, ME, Hunt, GJ, Jiang, H, Joshi, V, Khetani, RS, Kosarev, P, Kovar, CL, Ma, J, Maleszka, R, Moritz, RFA, Munoz-Torres, MC, Murphy, TD, Muzny, DM, Newsham, IF, Reese, JT, Robertson, HM, Robinson, GE, Rueppell, O, Solovyev, V, Stanke, M, Stolle, E, Tsuruda, JM, Vaerenbergh, MV, Waterhouse, RM, Weaver, DB, Whitfield, CW, Wu, Y, Zdobnov, EM, Zhang, L, Zhu, D, Gibbs, RA, Patil, S, Gubbala, S, Aqrawi, P, Arias, F, Bess, C, Blankenburg, KB, Brocchini, M, Buhay, C, Challis, D, Chang, K, Chen, D, Coleman, P, Drummond, J, English, A, Evani, U, Francisco, L, Fu, Q, Goodspeed, R, Haessly, TH, Hale, W, Han, H, Hu, Y, Jackson, L, Jakkamsetti, A, Jayaseelan, JC, Kakkar, N, Kalra, D, Kandadi, H, Lee, S, Li, H, Liu, Y, Macmil, S, Mandapat, CM, Mata, R, Mathew, T, Matskevitch, T, Munidasa, M, Nagaswamy, U, Najjar, R, Nguyen, N, Niu, J, Opheim, D, Palculict, T, Paul, S, Pellon, M, Perales, L, Pham, C, Pham, P, Pu, LL, Qi, S, Qu, J, and Ren, Y
- Abstract
Background: The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. Results: Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. Conclusions: Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination. © 2014 Elsik et al.; licensee BioMed Central Ltd.
- Published
- 2014
11. The molecular toll pathway repertoire in anopheline mosquitoes.
- Author
-
Rhodes VL, Waterhouse RM, and Michel K
- Subjects
- Animals, Mosquito Vectors immunology, Mosquito Vectors genetics, Evolution, Molecular, NF-kappa B metabolism, Malaria immunology, Malaria transmission, Signal Transduction immunology, Toll-Like Receptors metabolism, Toll-Like Receptors genetics, Immunity, Innate, Anopheles immunology, Anopheles genetics, Phylogeny, Insect Proteins genetics, Insect Proteins metabolism
- Abstract
Innate immunity in mosquitoes has received much attention due to its potential impact on vector competence for vector-borne disease pathogens, including malaria parasites. The nuclear factor (NF)-κB-dependent Toll pathway is a major regulator of innate immunity in insects. In mosquitoes, this pathway controls transcription of the majority of the known canonical humoral immune effectors, mediates anti-bacterial, anti-fungal and anti-viral immune responses, and contributes to malaria parasite killing. However, besides initial gene annotation of putative Toll pathway members and genetic analysis of the contribution of few key components to immunity, the molecular make-up and function of the Toll pathway in mosquitoes is largely unexplored. To facilitate functional analyses of the Toll pathway in mosquitoes, we report here manually annotated and refined gene models of Toll-like receptors and all putative components of the intracellular signal transduction cascade across 19 anopheline genomes, and in two culicine genomes. In addition, based on phylogenetic analyses, we identified differing levels of evolutionary constraint across the intracellular Toll pathway members, and identified a recent radiation of TOLL1/5 within the Anopheles gambiae complex. Together, this study provides insight into the evolution of TLRs and the putative members of the intracellular signal transduction cascade within the genus Anopheles., Competing Interests: Competing interests The authors have declared they have no competing interests., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF
12. The moulting arthropod: a complete genetic toolkit review.
- Author
-
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, and Waterhouse RM
- Subjects
- Animals, Arthropods genetics, Arthropods physiology, Molting genetics, Molting physiology
- Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting., (© 2024 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.)
- Published
- 2024
- Full Text
- View/download PDF
13. Author Correction: The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics.
- Author
-
Mc Cartney AM, Formenti G, Mouton A, De Panis D, Marins LS, Leitão HG, Diedericks G, Kirangwa J, Morselli M, Salces-Ortiz J, Escudero N, Iannucci A, Natali C, Svardal H, Fernández R, De Pooter T, Joris G, Strazisar M, Wood JMD, Herron KE, Seehausen O, Watts PC, Shaw F, Davey RP, Minotto A, Fernández JM, Böhne A, Alegria C, Alioto T, Alves PC, Amorim IR, Aury JM, Backstrom N, Baldrian P, Baltrunaite L, Barta E, BedHom B, Belser C, Bergsten J, Bertrand L, Bilandija H, Binzer-Panchal M, Bista I, Blaxter M, Borges PAV, Dias GB, Bosse M, Brown T, Bruggmann R, Buena-Atienza E, Burgin J, Buzan E, Cariani A, Casadei N, Chiara M, Chozas S, Čiampor F Jr, Crottini A, Cruaud C, Cruz F, Dalen L, De Biase A, Del Campo J, Delic T, Dennis AB, Derks MFL, Diroma MA, Djan M, Duprat S, Eleftheriadi K, Feulner PGD, Flot JF, Forni G, Fosso B, Fournier P, Fournier-Chambrillon C, Gabaldon T, Garg S, Gissi C, Giupponi L, Gomez-Garrido J, González J, Grilo ML, Grüning B, Guerin T, Guiglielmoni N, Gut M, Haesler MP, Hahn C, Halpern B, Harrison PW, Heintz J, Hindrikson M, Höglund J, Howe K, Hughes GM, Istace B, Cock MJ, Janžekovič F, Jonsson ZO, Joye-Dind S, Koskimäki JJ, Krystufek B, Kubacka J, Kuhl H, Kusza S, Labadie K, Lähteenaro M, Lantz H, Lavrinienko A, Leclère L, Lopes RJ, Madsen O, Magdelenat G, Magoga G, Manousaki T, Mappes T, Marques JP, Redondo GIM, Maumus F, McCarthy SA, Megens HJ, Melo-Ferreira J, Mendes SL, Montagna M, Moreno J, Mosbech MB, Moura M, Musilova Z, Myers E, Nash WJ, Nater A, Nicholson P, Niell M, Nijland R, Noel B, Noren K, Oliveira PH, Olsen RA, Ometto L, Oomen RA, Ossowski S, Palinauskas V, Palsson S, Panibe JP, Pauperio J, Pavlek M, Payen E, Pawlowska J, Pellicer J, Pesole G, Pimenta J, Pippel M, Pirttilä AM, Poulakakis N, Rajan J, M C Rego R, Resendes R, Resl P, Riesgo A, Rodin-Morch P, Soares AER, Fernandes CR, Romeiras MM, Roxo G, Rüber L, Ruiz-Lopez MJ, Saarma U, da Silva LP, Sim-Sim M, Soler L, Sousa VC, Santos CS, Spada A, Stefanovic M, Steger V, Stiller J, Stöck M, Struck TH, Sudasinghe H, Tapanainen R, Tellgren-Roth C, Trindade H, Tukalenko Y, Urso I, Vacherie B, Van Belleghem SM, Van Oers K, Vargas-Chavez C, Velickovic N, Vella N, Vella A, Vernesi C, Vicente S, Villa S, Pettersson OV, Volckaert FAM, Voros J, Wincker P, Winkler S, Ciofi C, Waterhouse RM, and Mazzoni CJ
- Published
- 2024
- Full Text
- View/download PDF
14. Rapid evolution of mitochondrion-related genes in haplodiploid arthropods.
- Author
-
Li Y, Thomas GWC, Richards S, Waterhouse RM, Zhou X, and Pfrender ME
- Subjects
- Animals, Phylogeny, Haploidy, Diploidy, Oxidative Phosphorylation, Cell Nucleus genetics, Evolution, Molecular, Arthropods genetics, Genes, Mitochondrial genetics
- Abstract
Background: Mitochondrial genes and nuclear genes cooperate closely to maintain the functions of mitochondria, especially in the oxidative phosphorylation (OXPHOS) pathway. However, mitochondrial genes among arthropod lineages have dramatic evolutionary rate differences. Haplodiploid arthropods often show fast-evolving mitochondrial genes. One hypothesis predicts that the small effective population size of haplodiploid species could enhance the effect of genetic drift leading to higher substitution rates in mitochondrial and nuclear genes. Alternatively, positive selection or compensatory changes in nuclear OXPHOS genes could lead to the fast-evolving mitochondrial genes. However, due to the limited number of arthropod genomes, the rates of evolution for nuclear genes in haplodiploid species, besides hymenopterans, are largely unknown. To test these hypotheses, we used data from 76 arthropod genomes, including 5 independently evolved haplodiploid lineages, to estimate the evolutionary rates and patterns of gene family turnover of mitochondrial and nuclear genes., Results: We show that five haplodiploid lineages tested here have fast-evolving mitochondrial genes and fast-evolving nuclear genes related to mitochondrial functions, while nuclear genes not related to mitochondrion showed no significant evolutionary rate differences. Among hymenopterans, bees and ants show faster rates of molecular evolution in mitochondrial genes and mitochondrion-related nuclear genes than sawflies and wasps. With genome data, we also find gene family expansions and contractions in mitochondrion-related genes of bees and ants., Conclusions: Our results reject the small population size hypothesis in haplodiploid species. A combination of positive selection and compensatory changes could lead to the observed patterns in haplodiploid species. The elevated evolutionary rates in OXPHOS complex 2 genes of bees and ants suggest a unique evolutionary history of social hymenopterans., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
15. The Molecular Toll Pathway Repertoire in Anopheline Mosquitoes.
- Author
-
Rhodes VL, Waterhouse RM, and Michel K
- Abstract
Innate immunity in mosquitoes has received much attention due to its potential impact on vector competence for vector-borne disease pathogens, including malaria parasites. The nuclear factor (NF)-κB-dependent Toll pathway is a major regulator of innate immunity in insects. In mosquitoes, this pathway controls transcription of the majority of the known canonical humoral immune effectors, mediates anti-bacterial, anti-fungal and anti-viral immune responses, and contributes to malaria parasite killing. However, besides initial gene annotation of putative Toll pathway members and genetic analysis of the contribution of few key components to immunity, the molecular make-up and function of the Toll pathway in mosquitoes is largely unexplored. To facilitate functional analyses of the Toll pathway in mosquitoes, we report here manually annotated and refined gene models of Toll-like receptors and all putative components of the intracellular signal transduction cascade across 19 anopheline genomes, and in two culicine genomes. In addition, based on phylogenetic analyses, we identified differing levels of evolutionary constraint across the intracellular Toll pathway members, and identified a recent radiation of TOLL1/5 within the An. gambiae complex. Together, this study provides insight into the evolution of TLRs and the putative members of the intracellular signal transduction cascade within the genus Anopheles ., Competing Interests: COMPETING INTERESTS The authors have declared they have no competing interests.
- Published
- 2024
- Full Text
- View/download PDF
16. The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics.
- Author
-
Mc Cartney AM, Formenti G, Mouton A, De Panis D, Marins LS, Leitão HG, Diedericks G, Kirangwa J, Morselli M, Salces-Ortiz J, Escudero N, Iannucci A, Natali C, Svardal H, Fernández R, De Pooter T, Joris G, Strazisar M, Wood JMD, Herron KE, Seehausen O, Watts PC, Shaw F, Davey RP, Minotto A, Fernández JM, Böhne A, Alegria C, Alioto T, Alves PC, Amorim IR, Aury JM, Backstrom N, Baldrian P, Baltrunaite L, Barta E, BedHom B, Belser C, Bergsten J, Bertrand L, Bilandija H, Binzer-Panchal M, Bista I, Blaxter M, Borges PAV, Dias GB, Bosse M, Brown T, Bruggmann R, Buena-Atienza E, Burgin J, Buzan E, Cariani A, Casadei N, Chiara M, Chozas S, Čiampor F Jr, Crottini A, Cruaud C, Cruz F, Dalen L, De Biase A, Del Campo J, Delic T, Dennis AB, Derks MFL, Diroma MA, Djan M, Duprat S, Eleftheriadi K, Feulner PGD, Flot JF, Forni G, Fosso B, Fournier P, Fournier-Chambrillon C, Gabaldon T, Garg S, Gissi C, Giupponi L, Gomez-Garrido J, González J, Grilo ML, Grüning B, Guerin T, Guiglielmoni N, Gut M, Haesler MP, Hahn C, Halpern B, Harrison PW, Heintz J, Hindrikson M, Höglund J, Howe K, Hughes GM, Istace B, Cock MJ, Janžekovič F, Jonsson ZO, Joye-Dind S, Koskimäki JJ, Krystufek B, Kubacka J, Kuhl H, Kusza S, Labadie K, Lähteenaro M, Lantz H, Lavrinienko A, Leclère L, Lopes RJ, Madsen O, Magdelenat G, Magoga G, Manousaki T, Mappes T, Marques JP, Redondo GIM, Maumus F, McCarthy SA, Megens HJ, Melo-Ferreira J, Mendes SL, Montagna M, Moreno J, Mosbech MB, Moura M, Musilova Z, Myers E, Nash WJ, Nater A, Nicholson P, Niell M, Nijland R, Noel B, Noren K, Oliveira PH, Olsen RA, Ometto L, Oomen RA, Ossowski S, Palinauskas V, Palsson S, Panibe JP, Pauperio J, Pavlek M, Payen E, Pawlowska J, Pellicer J, Pesole G, Pimenta J, Pippel M, Pirttilä AM, Poulakakis N, Rajan J, M C Rego R, Resendes R, Resl P, Riesgo A, Rodin-Morch P, Soares AER, Fernandes CR, Romeiras MM, Roxo G, Rüber L, Ruiz-Lopez MJ, Saarma U, da Silva LP, Sim-Sim M, Soler L, Sousa VC, Santos CS, Spada A, Stefanovic M, Steger V, Stiller J, Stöck M, Struck TH, Sudasinghe H, Tapanainen R, Tellgren-Roth C, Trindade H, Tukalenko Y, Urso I, Vacherie B, Van Belleghem SM, Van Oers K, Vargas-Chavez C, Velickovic N, Vella N, Vella A, Vernesi C, Vicente S, Villa S, Pettersson OV, Volckaert FAM, Voros J, Wincker P, Winkler S, Ciofi C, Waterhouse RM, and Mazzoni CJ
- Abstract
A genomic database of all Earth's eukaryotic species could contribute to many scientific discoveries; however, only a tiny fraction of species have genomic information available. In 2018, scientists across the world united under the Earth BioGenome Project (EBP), aiming to produce a database of high-quality reference genomes containing all ~1.5 million recognized eukaryotic species. As the European node of the EBP, the European Reference Genome Atlas (ERGA) sought to implement a new decentralised, equitable and inclusive model for producing reference genomes. For this, ERGA launched a Pilot Project establishing the first distributed reference genome production infrastructure and testing it on 98 eukaryotic species from 33 European countries. Here we outline the infrastructure and explore its effectiveness for scaling high-quality reference genome production, whilst considering equity and inclusion. The outcomes and lessons learned provide a solid foundation for ERGA while offering key learnings to other transnational, national genomic resource projects and the EBP., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
17. The ELIXIR Biodiversity Community: Understanding short- and long-term changes in biodiversity.
- Author
-
Waterhouse RM, Adam-Blondon AF, Balech B, Barta E, Ying Shi Chua P, Di Cola V, Heil KF, Hughes GM, Jermiin LS, Kalaš M, Lanfear J, Pafilis E, Palagi PM, Papageorgiou AC, Paupério J, Psomopoulos F, Raes N, Burgin J, and Gabaldón T
- Subjects
- Humans, Conservation of Natural Resources, Biodiversity
- Abstract
Biodiversity loss is now recognised as one of the major challenges for humankind to address over the next few decades. Unless major actions are taken, the sixth mass extinction will lead to catastrophic effects on the Earth's biosphere and human health and well-being. ELIXIR can help address the technical challenges of biodiversity science, through leveraging its suite of services and expertise to enable data management and analysis activities that enhance our understanding of life on Earth and facilitate biodiversity preservation and restoration. This white paper, prepared by the ELIXIR Biodiversity Community, summarises the current status and responses, and presents a set of plans, both technical and community-oriented, that should both enhance how ELIXIR Services are applied in the biodiversity field and how ELIXIR builds connections across the many other infrastructures active in this area. We discuss the areas of highest priority, how they can be implemented in cooperation with the ELIXIR Platforms, and their connections to existing ELIXIR Communities and international consortia. The article provides a preliminary blueprint for a Biodiversity Community in ELIXIR and is an appeal to identify and involve new stakeholders., Competing Interests: No competing interests were disclosed., (Copyright: © 2024 Waterhouse RM et al.)
- Published
- 2024
- Full Text
- View/download PDF
18. Scalable, accessible and reproducible reference genome assembly and evaluation in Galaxy.
- Author
-
Larivière D, Abueg L, Brajuka N, Gallardo-Alba C, Grüning B, Ko BJ, Ostrovsky A, Palmada-Flores M, Pickett BD, Rabbani K, Antunes A, Balacco JR, Chaisson MJP, Cheng H, Collins J, Couture M, Denisova A, Fedrigo O, Gallo GR, Giani AM, Gooder GM, Horan K, Jain N, Johnson C, Kim H, Lee C, Marques-Bonet T, O'Toole B, Rhie A, Secomandi S, Sozzoni M, Tilley T, Uliano-Silva M, van den Beek M, Williams RW, Waterhouse RM, Phillippy AM, Jarvis ED, Schatz MC, Nekrutenko A, and Formenti G
- Subjects
- Computational Biology, Software
- Published
- 2024
- Full Text
- View/download PDF
19. Investigating the Evolution of Drosophila STING-Dependent Antiviral Innate Immunity by Multispecies Comparison of 2'3'-cGAMP Responses.
- Author
-
Hédelin L, Thiébaut A, Huang J, Li X, Lemoine A, Haas G, Meignin C, Cai H, Waterhouse RM, Martins N, and Imler JL
- Subjects
- Animals, Nucleotides, Cyclic, Drosophila, Immunity, Innate
- Abstract
Viruses represent a major threat to all animals, which defend themselves through induction of a large set of virus-stimulated genes that collectively control the infection. In vertebrates, these genes include interferons that play a critical role in the amplification of the response to infection. Virus- and interferon-stimulated genes include restriction factors targeting the different steps of the viral replication cycle, in addition to molecules associated with inflammation and adaptive immunity. Predictably, antiviral genes evolve dynamically in response to viral pressure. As a result, each animal has a unique arsenal of antiviral genes. Here, we exploit the capacity to experimentally activate the evolutionarily conserved stimulator of IFN genes (STING) signaling pathway by injection of the cyclic dinucleotide 2'3'-cyclic guanosine monophosphate-adenosine monophosphate into flies to define the repertoire of STING-regulated genes in 10 Drosophila species, spanning 40 million years of evolution. Our data reveal a set of conserved STING-regulated factors, including STING itself, a cGAS-like-receptor, the restriction factor pastel, and the antiviral protein Vago, but also 2 key components of the antiviral RNA interference pathway, Dicer-2, and Argonaute2. In addition, we identify unknown species- or lineage-specific genes that have not been previously associated with resistance to viruses. Our data provide insight into the core antiviral response in Drosophila flies and pave the way for the characterization of previously unknown antiviral effectors., (© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2024
- Full Text
- View/download PDF
20. Pan-genome analysis highlights the role of structural variation in the evolution and environmental adaptation of Asian honeybees.
- Author
-
Li Y, Yao J, Sang H, Wang Q, Su L, Zhao X, Xia Z, Wang F, Wang K, Lou D, Wang G, Waterhouse RM, Wang H, Luo S, and Sun C
- Subjects
- Bees genetics, Animals, Phylogeny, Sequence Analysis, DNA, Genome, Insect, Polymorphism, Single Nucleotide
- Abstract
The Asian honeybee, Apis cerana, is an ecologically and economically important pollinator. Mapping its genetic variation is key to understanding population-level health, histories and potential capacities to respond to environmental changes. However, most efforts to date were focused on single nucleotide polymorphisms (SNPs) based on a single reference genome, thereby ignoring larger scale genomic variation. We employed long-read sequencing technologies to generate a chromosome-scale reference genome for the ancestral group of A. cerana. Integrating this with 525 resequencing data sets, we constructed the first pan-genome of A. cerana, encompassing almost the entire gene content. We found that 31.32% of genes in the pan-genome were variably present across populations, providing a broad gene pool for environmental adaptation. We identified and characterized structural variations (SVs) and found that they were not closely linked with SNP distributions; however, the formation of SVs was closely associated with transposable elements. Furthermore, phylogenetic analysis using SVs revealed a novel A. cerana ecological group not recoverable from the SNP data. Performing environmental association analysis identified a total of 44 SVs likely to be associated with environmental adaptation. Verification and analysis of one of these, a 330 bp deletion in the Atpalpha gene, indicated that this SV may promote the cold adaptation of A. cerana by altering gene expression. Taken together, our study demonstrates the feasibility and utility of applying pan-genome approaches to map and explore genetic feature variations of honeybee populations, and in particular to examine the role of SVs in the evolution and environmental adaptation of A. cerana., (© 2023 John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
21. DrosOMA: the Drosophila Orthologous Matrix browser.
- Author
-
Thiébaut A, Altenhoff AM, Campli G, Glover N, Dessimoz C, and Waterhouse RM
- Subjects
- Animals, Comparative Genomic Hybridization, Databases, Factual, Genomics, Drosophila genetics, Evolution, Molecular
- Abstract
Background: Comparative genomic analyses to delineate gene evolutionary histories inform the understanding of organismal biology by characterising gene and gene family origins, trajectories, and dynamics, as well as enabling the tracing of speciation, duplication, and loss events, and facilitating the transfer of gene functional information across species. Genomic data are available for an increasing number of species from the genus Drosophila, however, a dedicated resource exploiting these data to provide the research community with browsable results from genus-wide orthology delineation has been lacking., Methods: Using the OMA Orthologous Matrix orthology inference approach and browser deployment framework, we catalogued orthologues across a selected set of Drosophila species with high-quality annotated genomes. We developed and deployed a dedicated instance of the OMA browser to facilitate intuitive exploration, visualisation, and downloading of the genus-wide orthology delineation results., Results: DrosOMA - the Drosophila Orthologous Matrix browser, accessible from https://drosoma.dcsr.unil.ch/ - presents the results of orthology delineation for 36 drosophilids from across the genus and four outgroup dipterans. It enables querying and browsing of the orthology data through a feature-rich web interface, with gene-view, orthologous group-view, and genome-view pages, including comprehensive gene name and identifier cross-references together with available functional annotations and protein domain architectures, as well as tools to visualise local and global synteny conservation., Conclusions: The DrosOMA browser demonstrates the deployability of the OMA browser framework for building user-friendly orthology databases with dense sampling of a selected taxonomic group. It provides the Drosophila research community with a tailored resource of browsable results from genus-wide orthology delineation., Competing Interests: No competing interests were disclosed., (Copyright: © 2024 Thiébaut A et al.)
- Published
- 2024
- Full Text
- View/download PDF
22. Biodiversity: an atlas of European reference genomes.
- Author
-
Mazzoni CJ, Ciofi C, and Waterhouse RM
- Subjects
- Europe, Animals, Biodiversity, Eukaryota genetics, Genome, Genomics methods, Genomics standards
- Published
- 2023
- Full Text
- View/download PDF
23. How genomics can help biodiversity conservation.
- Author
-
Theissinger K, Fernandes C, Formenti G, Bista I, Berg PR, Bleidorn C, Bombarely A, Crottini A, Gallo GR, Godoy JA, Jentoft S, Malukiewicz J, Mouton A, Oomen RA, Paez S, Palsbøll PJ, Pampoulie C, Ruiz-López MJ, Secomandi S, Svardal H, Theofanopoulou C, de Vries J, Waldvogel AM, Zhang G, Jarvis ED, Bálint M, Ciofi C, Waterhouse RM, Mazzoni CJ, and Höglund J
- Subjects
- Genomics, Genome, Conservation of Natural Resources, Biodiversity
- Abstract
The availability of public genomic resources can greatly assist biodiversity assessment, conservation, and restoration efforts by providing evidence for scientifically informed management decisions. Here we survey the main approaches and applications in biodiversity and conservation genomics, considering practical factors, such as cost, time, prerequisite skills, and current shortcomings of applications. Most approaches perform best in combination with reference genomes from the target species or closely related species. We review case studies to illustrate how reference genomes can facilitate biodiversity research and conservation across the tree of life. We conclude that the time is ripe to view reference genomes as fundamental resources and to integrate their use as a best practice in conservation genomics., Competing Interests: Declaration of interests No interests are declared., (Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
24. Scalable, accessible, and reproducible reference genome assembly and evaluation in Galaxy.
- Author
-
Larivière D, Abueg L, Brajuka N, Gallardo-Alba C, Grüning B, Ko BJ, Ostrovsky A, Palmada-Flores M, Pickett BD, Rabbani K, Balacco JR, Chaisson M, Cheng H, Collins J, Denisova A, Fedrigo O, Gallo GR, Giani AM, Gooder GM, Jain N, Johnson C, Kim H, Lee C, Marques-Bonet T, O'Toole B, Rhie A, Secomandi S, Sozzoni M, Tilley T, Uliano-Silva M, van den Beek M, Waterhouse RM, Phillippy AM, Jarvis ED, Schatz MC, Nekrutenko A, and Formenti G
- Abstract
Improvements in genome sequencing and assembly are enabling high-quality reference genomes for all species. However, the assembly process is still laborious, computationally and technically demanding, lacks standards for reproducibility, and is not readily scalable. Here we present the latest Vertebrate Genomes Project assembly pipeline and demonstrate that it delivers high-quality reference genomes at scale across a set of vertebrate species arising over the last ~500 million years. The pipeline is versatile and combines PacBio HiFi long-reads and Hi-C-based haplotype phasing in a new graph-based paradigm. Standardized quality control is performed automatically to troubleshoot assembly issues and assess biological complexities. We make the pipeline freely accessible through Galaxy, accommodating researchers even without local computational resources and enhanced reproducibility by democratizing the training and assembly process. We demonstrate the flexibility and reliability of the pipeline by assembling reference genomes for 51 vertebrate species from major taxonomic groups (fish, amphibians, reptiles, birds, and mammals).
- Published
- 2023
- Full Text
- View/download PDF
25. Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World.
- Author
-
Labbé F, Abdeladhim M, Abrudan J, Araki AS, Araujo RN, Arensburger P, Benoit JB, Brazil RP, Bruno RV, Bueno da Silva Rivas G, Carvalho de Abreu V, Charamis J, Coutinho-Abreu IV, da Costa-Latgé SG, Darby A, Dillon VM, Emrich SJ, Fernandez-Medina D, Figueiredo Gontijo N, Flanley CM, Gatherer D, Genta FA, Gesing S, Giraldo-Calderón GI, Gomes B, Aguiar ERGR, Hamilton JGC, Hamarsheh O, Hawksworth M, Hendershot JM, Hickner PV, Imler JL, Ioannidis P, Jennings EC, Kamhawi S, Karageorgiou C, Kennedy RC, Krueger A, Latorre-Estivalis JM, Ligoxygakis P, Meireles-Filho ACA, Minx P, Miranda JC, Montague MJ, Nowling RJ, Oliveira F, Ortigão-Farias J, Pavan MG, Horacio Pereira M, Nobrega Pitaluga A, Proveti Olmo R, Ramalho-Ortigao M, Ribeiro JMC, Rosendale AJ, Sant'Anna MRV, Scherer SE, Secundino NFC, Shoue DA, da Silva Moraes C, Gesto JSM, Souza NA, Syed Z, Tadros S, Teles-de-Freitas R, Telleria EL, Tomlinson C, Traub-Csekö YM, Marques JT, Tu Z, Unger MF, Valenzuela J, Ferreira FV, de Oliveira KPV, Vigoder FM, Vontas J, Wang L, Weedall GD, Zhioua E, Richards S, Warren WC, Waterhouse RM, Dillon RJ, and McDowell MA
- Subjects
- Animals, Humans, Genomics, Phlebotomus parasitology, Psychodidae parasitology, Leishmania genetics, Leishmaniasis, Cutaneous
- Abstract
Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites., Competing Interests: The authors have declared that no competing interests exist., (Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.)
- Published
- 2023
- Full Text
- View/download PDF
26. Mycobacterium abscessus resists the innate cellular response by surviving cell lysis of infected phagocytes.
- Author
-
Touré H, Galindo LA, Lagune M, Glatigny S, Waterhouse RM, Guénal I, Herrmann JL, Girard-Misguich F, and Szuplewski S
- Subjects
- Animals, Humans, Mice, Drosophila melanogaster, Phagocytes pathology, Drosophila, Mycobacterium abscessus, Mycobacterium Infections microbiology, Mycobacterium, Mycobacterium Infections, Nontuberculous microbiology
- Abstract
Mycobacterium abscessus is the most pathogenic species among the predominantly saprophytic fast-growing mycobacteria. This opportunistic human pathogen causes severe infections that are difficult to eradicate. Its ability to survive within the host was described mainly with the rough (R) form of M. abscessus, which is lethal in several animal models. This R form is not present at the very beginning of the disease but appears during the progression and the exacerbation of the mycobacterial infection, by transition from a smooth (S) form. However, we do not know how the S form of M. abscessus colonizes and infects the host to then multiply and cause the disease. In this work, we were able to show the hypersensitivity of fruit flies, Drosophila melanogaster, to intrathoracic infections by the S and R forms of M. abscessus. This allowed us to unravel how the S form resists the innate immune response developed by the fly, both the antimicrobial peptides- and cellular-dependent immune responses. We demonstrate that intracellular M. abscessus was not killed within the infected phagocytic cells, by resisting lysis and caspase-dependent apoptotic cell death of Drosophila infected phagocytes. In mice, in a similar manner, intra-macrophage M. abscessus was not killed when M. abscessus-infected macrophages were lysed by autologous natural killer cells. These results demonstrate the propensity of the S form of M. abscessus to resist the host's innate responses to colonize and multiply within the host., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2023 Touré et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2023
- Full Text
- View/download PDF
27. Mosquito saliva enhances virus infection through sialokinin-dependent vascular leakage.
- Author
-
Lefteri DA, Bryden SR, Pingen M, Terry S, McCafferty A, Beswick EF, Georgiev G, Van der Laan M, Mastrullo V, Campagnolo P, Waterhouse RM, Varjak M, Merits A, Fragkoudis R, Griffin S, Shams K, Pondeville E, and McKimmie CS
- Subjects
- Animals, Aedes genetics, Aedes virology, Arbovirus Infections transmission, Arboviruses genetics, Arboviruses metabolism, Saliva virology, Tachykinins genetics, Tachykinins metabolism, Virus Diseases transmission
- Abstract
Viruses transmitted by Aedes mosquitoes are an increasingly important global cause of disease. Defining common determinants of host susceptibility to this large group of heterogenous pathogens is key for informing the rational design of panviral medicines. Infection of the vertebrate host with these viruses is enhanced by mosquito saliva, a complex mixture of salivary-gland-derived factors and microbiota. We show that the enhancement of infection by saliva was dependent on vascular function and was independent of most antisaliva immune responses, including salivary microbiota. Instead, the Aedes gene product sialokinin mediated the enhancement of virus infection through a rapid reduction in endothelial barrier integrity. Sialokinin is unique within the insect world as having a vertebrate-like tachykinin sequence and is absent from Anopheles mosquitoes , which are incompetent for most arthropod-borne viruses, whose saliva was not proviral and did not induce similar vascular permeability. Therapeutic strategies targeting sialokinin have the potential to limit disease severity following infection with Aedes -mosquito-borne viruses.
- Published
- 2022
- Full Text
- View/download PDF
28. Exploring new genomic territories with emerging model insects.
- Author
-
Feron R and Waterhouse RM
- Subjects
- Animals, Insecta genetics, Genome, Genomics
- Abstract
Improvements in reference genome generation for insects and across the tree of life are extending the concept and utility of model organisms beyond traditional laboratory-tractable supermodels. Species or groups of species with comprehensive genome resources can be developed into model systems for studying a large variety of biological phenomena. Advances in sequencing and assembly technologies are supporting these emerging genome-enabled model systems by producing resources that are increasingly accurate and complete. Nevertheless, quality controls including assessing gene content completeness are required to ensure that these data can be included in expanding catalogues of high-quality references that will greatly advance understanding of insect biology and evolution., (Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
29. CrowdGO: Machine learning and semantic similarity guided consensus Gene Ontology annotation.
- Author
-
Reijnders MJMF and Waterhouse RM
- Subjects
- Consensus, Gene Ontology, Machine Learning, Molecular Sequence Annotation, Computational Biology methods, Semantics
- Abstract
Characterising gene function for the ever-increasing number and diversity of species with annotated genomes relies almost entirely on computational prediction methods. These software are also numerous and diverse, each with different strengths and weaknesses as revealed through community benchmarking efforts. Meta-predictors that assess consensus and conflict from individual algorithms should deliver enhanced functional annotations. To exploit the benefits of meta-approaches, we developed CrowdGO, an open-source consensus-based Gene Ontology (GO) term meta-predictor that employs machine learning models with GO term semantic similarities and information contents. By re-evaluating each gene-term annotation, a consensus dataset is produced with high-scoring confident annotations and low-scoring rejected annotations. Applying CrowdGO to results from a deep learning-based, a sequence similarity-based, and two protein domain-based methods, delivers consensus annotations with improved precision and recall. Furthermore, using standard evaluation measures CrowdGO performance matches that of the community's best performing individual methods. CrowdGO therefore offers a model-informed approach to leverage strengths of individual predictors and produce comprehensive and accurate gene functional annotations., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
30. Anopheles mosquitoes reveal new principles of 3D genome organization in insects.
- Author
-
Lukyanchikova V, Nuriddinov M, Belokopytova P, Taskina A, Liang J, Reijnders MJMF, Ruzzante L, Feron R, Waterhouse RM, Wu Y, Mao C, Tu Z, Sharakhov IV, and Fishman V
- Subjects
- Animals, Chromatin genetics, Anopheles genetics
- Abstract
Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for ~100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
31. Long-distance dispersal of pigeons and doves generated new ecological opportunities for host-switching and adaptive radiation by their parasites.
- Author
-
Boyd BM, Nguyen NP, Allen JM, Waterhouse RM, Vo KB, Sweet AD, Clayton DH, Bush SE, Shapiro MD, and Johnson KP
- Subjects
- Animals, Columbidae, Host-Parasite Interactions, Phylogeny, Parasites, Phthiraptera
- Abstract
Adaptive radiation is an important mechanism of organismal diversification and can be triggered by new ecological opportunities. Although poorly studied in this regard, parasites are an ideal group in which to study adaptive radiations because of their close associations with host species. Both experimental and comparative studies suggest that the ectoparasitic wing lice of pigeons and doves have adaptively radiated, leading to differences in body size and overall coloration. Here, we show that long-distance dispersal by dove hosts was central to parasite diversification because it provided new ecological opportunities for parasites to speciate after host-switching. We further show that among extant parasite lineages host-switching decreased over time, with cospeciation becoming the more dominant mode of parasite speciation. Taken together, our results suggest that host dispersal, followed by host-switching, provided novel ecological opportunities that facilitated adaptive radiation by parasites.
- Published
- 2022
- Full Text
- View/download PDF
32. Assessing species coverage and assembly quality of rapidly accumulating sequenced genomes.
- Author
-
Feron R and Waterhouse RM
- Subjects
- Base Sequence, Chromosome Mapping, Genomics methods, High-Throughput Nucleotide Sequencing, Sequence Analysis, DNA, Ecosystem, Genome
- Abstract
Background: Ambitious initiatives to coordinate genome sequencing of Earth's biodiversity mean that the accumulation of genomic data is growing rapidly. In addition to cataloguing biodiversity, these data provide the basis for understanding biological function and evolution. Accurate and complete genome assemblies offer a comprehensive and reliable foundation upon which to advance our understanding of organismal biology at genetic, species, and ecosystem levels. However, ever-changing sequencing technologies and analysis methods mean that available data are often heterogeneous in quality. To guide forthcoming genome generation efforts and promote efficient prioritization of resources, it is thus essential to define and monitor taxonomic coverage and quality of the data., Findings: Here we present an automated analysis workflow that surveys genome assemblies from the United States NCBI, assesses their completeness using the relevant BUSCO datasets, and collates the results into an interactively browsable resource. We apply our workflow to produce a community resource of available assemblies from the phylum Arthropoda, the Arthropoda Assembly Assessment Catalogue. Using this resource, we survey current taxonomic coverage and assembly quality at the NCBI, examine how key assembly metrics relate to gene content completeness, and compare results from using different BUSCO lineage datasets., Conclusions: These results demonstrate how the workflow can be used to build a community resource that enables large-scale assessments to survey species coverage and data quality of available genome assemblies, and to guide prioritizations for ongoing and future sampling, sequencing, and genome generation initiatives., (© The Author(s) 2022. Published by Oxford University Press GigaScience.)
- Published
- 2022
- Full Text
- View/download PDF
33. Functional Constraints on Insect Immune System Components Govern Their Evolutionary Trajectories.
- Author
-
Ruzzante L, Feron R, Reijnders MJMF, Thiébaut A, and Waterhouse RM
- Subjects
- Animals, Genome, Genomics, Immune System, Evolution, Molecular, Insecta genetics
- Abstract
Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes. Characterizing patterns of genomic change where putative functions and interactions of system components are relatively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary trajectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolutionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relationships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how functional constraints on different components of biological systems govern their evolutionary trajectories., (© The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2022
- Full Text
- View/download PDF
34. Convergent evolution of venom gland transcriptomes across Metazoa.
- Author
-
Zancolli G, Reijnders M, Waterhouse RM, and Robinson-Rechavi M
- Subjects
- Animal Structures metabolism, Animals, Evolution, Molecular, Phylogeny, Transcriptome, Venoms biosynthesis, Venoms genetics
- Abstract
Animals have repeatedly evolved specialized organs and anatomical structures to produce and deliver a mixture of potent bioactive molecules to subdue prey or predators-venom. This makes it one of the most widespread, convergent functions in the animal kingdom. Whether animals have adopted the same genetic toolkit to evolved venom systems is a fascinating question that still eludes us. Here, we performed a comparative analysis of venom gland transcriptomes from 20 venomous species spanning the main Metazoan lineages to test whether different animals have independently adopted similar molecular mechanisms to perform the same function. We found a strong convergence in gene expression profiles, with venom glands being more similar to each other than to any other tissue from the same species, and their differences closely mirroring the species phylogeny. Although venom glands secrete some of the fastest evolving molecules (toxins), their gene expression does not evolve faster than evolutionarily older tissues. We found 15 venom gland-specific gene modules enriched in endoplasmic reticulum stress and unfolded protein response pathways, indicating that animals have independently adopted stress response mechanisms to cope with mass production of toxins. This, in turn, activates regulatory networks for epithelial development, cell turnover, and maintenance, which seem composed of both convergent and lineage-specific factors, possibly reflecting the different developmental origins of venom glands. This study represents a first step toward an understanding of the molecular mechanisms underlying the repeated evolution of one of the most successful adaptive traits in the animal kingdom., Competing Interests: The authors declare no competing interest., (Copyright © 2021 the Author(s). Published by PNAS.)
- Published
- 2022
- Full Text
- View/download PDF
35. A targeted amplicon sequencing panel to simultaneously identify mosquito species and Plasmodium presence across the entire Anopheles genus.
- Author
-
Makunin A, Korlević P, Park N, Goodwin S, Waterhouse RM, von Wyschetzki K, Jacob CG, Davies R, Kwiatkowski D, St Laurent B, Ayala D, and Lawniczak MKN
- Subjects
- Africa, Animals, Humans, Mosquito Vectors genetics, Anopheles genetics, Plasmodium genetics
- Abstract
Anopheles is a diverse genus of mosquitoes comprising over 500 described species, including all known human malaria vectors. While a limited number of key vector species have been studied in detail, the goal of malaria elimination calls for surveillance of all potential vector species. Here, we develop a multilocus amplicon sequencing approach that targets 62 highly variable loci in the Anopheles genome and two conserved loci in the Plasmodium mitochondrion, simultaneously revealing both the mosquito species and whether that mosquito carries malaria parasites. We also develop a cheap, nondestructive, and high-throughput DNA extraction workflow that provides template DNA from single mosquitoes for the multiplex PCR, which means specimens producing unexpected results can be returned to for morphological examination. Over 1000 individual mosquitoes can be sequenced in a single MiSeq run, and we demonstrate the panel's power to assign species identity using sequencing data for 40 species from Africa, Southeast Asia, and South America. We also show that the approach can be used to resolve geographic population structure within An. gambiae and An. coluzzii populations, as the population structure determined based on these 62 loci from over 1000 mosquitoes closely mirrors that revealed through whole genome sequencing. The end-to-end approach is quick, inexpensive, robust, and accurate, which makes it a promising technique for very large-scale mosquito genetic surveillance and vector control., (© 2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
36. Recommendations for connecting molecular sequence and biodiversity research infrastructures through ELIXIR.
- Author
-
Waterhouse RM, Adam-Blondon AF, Agosti D, Baldrian P, Balech B, Corre E, Davey RP, Lantz H, Pesole G, Quast C, Glöckner FO, Raes N, Sandionigi A, Santamaria M, Addink W, Vohradsky J, Nunes-Jorge A, Willassen NP, and Lanfear J
- Subjects
- Computational Biology, Europe, Biodiversity, Biological Science Disciplines
- Abstract
Threats to global biodiversity are increasingly recognised by scientists and the public as a critical challenge. Molecular sequencing technologies offer means to catalogue, explore, and monitor the richness and biogeography of life on Earth. However, exploiting their full potential requires tools that connect biodiversity infrastructures and resources. As a research infrastructure developing services and technical solutions that help integrate and coordinate life science resources across Europe, ELIXIR is a key player. To identify opportunities, highlight priorities, and aid strategic thinking, here we survey approaches by which molecular technologies help inform understanding of biodiversity. We detail example use cases to highlight how DNA sequencing is: resolving taxonomic issues; Increasing knowledge of marine biodiversity; helping understand how agriculture and biodiversity are critically linked; and playing an essential role in ecological studies. Together with examples of national biodiversity programmes, the use cases show where progress is being made but also highlight common challenges and opportunities for future enhancement of underlying technologies and services that connect molecular and wider biodiversity domains. Based on emerging themes, we propose key recommendations to guide future funding for biodiversity research: biodiversity and bioinformatic infrastructures need to collaborate closely and strategically; taxonomic efforts need to be aligned and harmonised across domains; metadata needs to be standardised and common data management approaches widely adopted; current approaches need to be scaled up dramatically to address the anticipated explosion of molecular data; bioinformatics support for biodiversity research needs to be enabled and sustained; training for end users of biodiversity research infrastructures needs to be prioritised; and community initiatives need to be proactive and focused on enabling solutions. For sequencing data to deliver their full potential they must be connected to knowledge: together, molecular sequence data collection initiatives and biodiversity research infrastructures can advance global efforts to prevent further decline of Earth's biodiversity., Competing Interests: No competing interests were disclosed., (Copyright: © 2022 Waterhouse RM et al.)
- Published
- 2021
- Full Text
- View/download PDF
37. Publisher Correction: The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control.
- Author
-
Olafson PU, Aksoy S, Attardo GM, Buckmeier G, Chen X, Coates CJ, Davis M, Dykema J, Emrich SJ, Friedrich M, Holmes CJ, Ioannidis P, Jansen EN, Jennings EC, Lawson D, Martinson EO, Maslen GL, Meisel RP, Murphy TD, Nayduch D, Nelson DR, Oyen KJ, Raszick TJ, Ribeiro JMC, Robertson HM, Rosendale AJ, Sackton TB, Saelao P, Swiger SL, Sze SH, Tarone AM, Taylor DB, Warren WC, Waterhouse RM, Weirauch MT, Werren JH, Wilson RK, Zdobnov EM, and Benoit JB
- Published
- 2021
- Full Text
- View/download PDF
38. RADSex: A computational workflow to study sex determination using restriction site-associated DNA sequencing data.
- Author
-
Feron R, Pan Q, Wen M, Imarazene B, Jouanno E, Anderson J, Herpin A, Journot L, Parrinello H, Klopp C, Kottler VA, Roco AS, Du K, Kneitz S, Adolfi M, Wilson CA, McCluskey B, Amores A, Desvignes T, Goetz FW, Takanashi A, Kawaguchi M, Detrich HW 3rd, Oliveira MA, Nóbrega RH, Sakamoto T, Nakamoto M, Wargelius A, Karlsen Ø, Wang Z, Stöck M, Waterhouse RM, Braasch I, Postlethwait JH, Schartl M, and Guiguen Y
- Subjects
- Animals, DNA, Female, Male, Sequence Analysis, DNA, Software, Workflow, Computational Biology, Fishes genetics, Sex Chromosomes, Sex Determination Analysis
- Abstract
The study of sex determination and sex chromosome organization in nonmodel species has long been technically challenging, but new sequencing methodologies now enable precise and high-throughput identification of sex-specific genomic sequences. In particular, restriction site-associated DNA sequencing (RAD-Seq) is being extensively applied to explore sex determination systems in many plant and animal species. However, software specifically designed to search for and visualize sex-biased markers using RAD-Seq data is lacking. Here, we present RADSex, a computational analysis workflow designed to study the genetic basis of sex determination using RAD-Seq data. RADSex is simple to use, requires few computational resources, makes no prior assumptions about the type of sex-determination system or structure of the sex locus, and offers convenient visualization through a dedicated R package. To demonstrate the functionality of RADSex, we re-analysed a published data set of Japanese medaka, Oryzias latipes, where we uncovered a previously unknown Y chromosome polymorphism. We then used RADSex to analyse new RAD-Seq data sets from 15 fish species spanning multiple taxonomic orders. We identified the sex determination system and sex-specific markers in six of these species, five of which had no known sex-markers prior to this study. We show that RADSex greatly facilitates the study of sex determination systems in nonmodel species thanks to its speed of analyses, low resource usage, ease of application and visualization options. Furthermore, our analysis of new data sets from 15 species provides new insights on sex determination in fish., (© 2021 John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
39. Erratum to: Genus-wide characterization of bumblebee genomes provides insights into their evolution and variation in ecological and behavioral traits.
- Author
-
Sun C, Huang J, Wang Y, Zhao X, Su L, Thomas GWC, Zhao M, Zhang X, Jungreis I, Kellis M, Vicario S, Sharakhov IV, Bondarenko SM, Hasselmann M, Kim CN, Paten B, Penso-Dolfin L, Wang L, Chang Y, Gao Q, Ma L, Ma L, Zhang Z, Zhang H, Zhang H, Ruzzante L, Robertson HM, Zhu Y, Liu Y, Yang H, Ding L, Wang Q, Ma D, Xu W, Liang C, Itgen MW, Mee L, Cao G, Zhang Z, Sadd BM, Hahn MW, Schaack S, Barribeau SM, Williams PH, Waterhouse RM, and Mueller RL
- Published
- 2021
- Full Text
- View/download PDF
40. Anopheles coluzzii stearoyl-CoA desaturase is essential for adult female survival and reproduction upon blood feeding.
- Author
-
Ferdous Z, Fuchs S, Behrends V, Trasanidis N, Waterhouse RM, Vlachou D, and Christophides GK
- Subjects
- Animals, Anopheles enzymology, Anopheles immunology, Female, Gene Expression Profiling, Mosquito Vectors parasitology, Stearoyl-CoA Desaturase genetics, Animal Feed analysis, Anopheles growth & development, Feeding Behavior, Mosquito Vectors physiology, Reproduction, Stearoyl-CoA Desaturase metabolism
- Abstract
Vitellogenesis and oocyte maturation require anautogenous female Anopheles mosquitoes to obtain a bloodmeal from a vertebrate host. The bloodmeal is rich in proteins that are readily broken down into amino acids in the midgut lumen and absorbed by the midgut epithelial cells where they are converted into lipids and then transported to other tissues including ovaries. The stearoyl-CoA desaturase (SCD) plays a pivotal role in this process by converting saturated (SFAs) to unsaturated (UFAs) fatty acids; the latter being essential for maintaining cell membrane fluidity amongst other housekeeping functions. Here, we report the functional and phenotypic characterization of SCD1 in the malaria vector mosquito Anopheles coluzzii. We show that RNA interference (RNAi) silencing of SCD1 and administration of sterculic acid (SA), a small molecule inhibitor of SCD1, significantly impact on the survival and reproduction of female mosquitoes following blood feeding. Microscopic observations reveal that the mosquito thorax is quickly filled with blood, a phenomenon likely caused by the collapse of midgut epithelial cell membranes, and that epithelial cells are depleted of lipid droplets and oocytes fail to mature. Transcriptional profiling shows that genes involved in protein, lipid and carbohydrate metabolism and immunity-related genes are the most affected by SCD1 knock down (KD) in blood-fed mosquitoes. Metabolic profiling reveals that these mosquitoes exhibit increased amounts of saturated fatty acids and TCA cycle intermediates, highlighting the biochemical framework by which the SCD1 KD phenotype manifests as a result of a detrimental metabolic syndrome. Accumulation of SFAs is also the likely cause of the potent immune response observed in the absence of infection, which resembles an auto-inflammatory condition. These data provide insights into mosquito bloodmeal metabolism and lipid homeostasis and could inform efforts to develop novel interventions against mosquito-borne diseases., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
41. Summary Visualizations of Gene Ontology Terms With GO-Figure!
- Author
-
Reijnders MJMF and Waterhouse RM
- Abstract
The Gene Ontology (GO) is a cornerstone of functional genomics research that drives discoveries through knowledge-informed computational analysis of biological data from large-scale assays. Key to this success is how the GO can be used to support hypotheses or conclusions about the biology or evolution of a study system by identifying annotated functions that are overrepresented in subsets of genes of interest. Graphical visualizations of such GO term enrichment results are critical to aid interpretation and avoid biases by presenting researchers with intuitive visual data summaries. Amongst current visualization tools and resources there is a lack of standalone open-source software solutions that facilitate explorations of key features of multiple lists of GO terms. To address this we developed GO-Figure!, an open-source Python software for producing user-customisable semantic similarity scatterplots of redundancy-reduced GO term lists. The lists are simplified by grouping together terms with similar functions using their quantified information contents and semantic similarities, with user-control over grouping thresholds. Representatives are then selected for plotting in two-dimensional semantic space where similar terms are placed closer to each other on the scatterplot, with an array of user-customisable graphical attributes. GO-Figure! offers a simple solution for command-line plotting of informative summary visualizations of lists of GO terms, designed to support exploratory data analyses and dataset comparisons., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Reijnders and Waterhouse.)
- Published
- 2021
- Full Text
- View/download PDF
42. The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control.
- Author
-
Olafson PU, Aksoy S, Attardo GM, Buckmeier G, Chen X, Coates CJ, Davis M, Dykema J, Emrich SJ, Friedrich M, Holmes CJ, Ioannidis P, Jansen EN, Jennings EC, Lawson D, Martinson EO, Maslen GL, Meisel RP, Murphy TD, Nayduch D, Nelson DR, Oyen KJ, Raszick TJ, Ribeiro JMC, Robertson HM, Rosendale AJ, Sackton TB, Saelao P, Swiger SL, Sze SH, Tarone AM, Taylor DB, Warren WC, Waterhouse RM, Weirauch MT, Werren JH, Wilson RK, Zdobnov EM, and Benoit JB
- Subjects
- Animals, Reproduction genetics, Genome, Insect, Host-Parasite Interactions genetics, Insect Control, Muscidae genetics
- Abstract
Background: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies., Results: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways., Conclusions: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha.
- Published
- 2021
- Full Text
- View/download PDF
43. Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral Traits.
- Author
-
Sun C, Huang J, Wang Y, Zhao X, Su L, Thomas GWC, Zhao M, Zhang X, Jungreis I, Kellis M, Vicario S, Sharakhov IV, Bondarenko SM, Hasselmann M, Kim CN, Paten B, Penso-Dolfin L, Wang L, Chang Y, Gao Q, Ma L, Ma L, Zhang Z, Zhang H, Zhang H, Ruzzante L, Robertson HM, Zhu Y, Liu Y, Yang H, Ding L, Wang Q, Ma D, Xu W, Liang C, Itgen MW, Mee L, Cao G, Zhang Z, Sadd BM, Hahn MW, Schaack S, Barribeau SM, Williams PH, Waterhouse RM, and Mueller RL
- Subjects
- Animals, Codon Usage, DNA Transposable Elements, Diet, Feeding Behavior, Gene Components, Genome Size, Selection, Genetic, Adaptation, Biological genetics, Bees genetics, Biological Evolution, Genome, Insect
- Abstract
Bumblebees are a diverse group of globally important pollinators in natural ecosystems and for agricultural food production. With both eusocial and solitary life-cycle phases, and some social parasite species, they are especially interesting models to understand social evolution, behavior, and ecology. Reports of many species in decline point to pathogen transmission, habitat loss, pesticide usage, and global climate change, as interconnected causes. These threats to bumblebee diversity make our reliance on a handful of well-studied species for agricultural pollination particularly precarious. To broadly sample bumblebee genomic and phenotypic diversity, we de novo sequenced and assembled the genomes of 17 species, representing all 15 subgenera, producing the first genus-wide quantification of genetic and genomic variation potentially underlying key ecological and behavioral traits. The species phylogeny resolves subgenera relationships, whereas incomplete lineage sorting likely drives high levels of gene tree discordance. Five chromosome-level assemblies show a stable 18-chromosome karyotype, with major rearrangements creating 25 chromosomes in social parasites. Differential transposable element activity drives changes in genome sizes, with putative domestications of repetitive sequences influencing gene coding and regulatory potential. Dynamically evolving gene families and signatures of positive selection point to genus-wide variation in processes linked to foraging, diet and metabolism, immunity and detoxification, as well as adaptations for life at high altitudes. Our study reveals how bumblebee genes and genomes have evolved across the Bombus phylogeny and identifies variations potentially linked to key ecological and behavioral traits of these important pollinators., (© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2021
- Full Text
- View/download PDF
44. Horizontally acquired antibacterial genes associated with adaptive radiation of ladybird beetles.
- Author
-
Li HS, Tang XF, Huang YH, Xu ZY, Chen ML, Du XY, Qiu BY, Chen PT, Zhang W, Ślipiński A, Escalona HE, Waterhouse RM, Zwick A, and Pang H
- Subjects
- Adaptation, Biological, Animals, Cell Wall chemistry, Cell Wall enzymology, Coleoptera enzymology, Host-Pathogen Interactions, Hydrolases genetics, Antibiosis genetics, Biological Evolution, Coleoptera genetics, Gene Transfer, Horizontal, Genes, Bacterial, Genes, Insect
- Abstract
Background: Horizontal gene transfer (HGT) has been documented in many herbivorous insects, conferring the ability to digest plant material and promoting their remarkable ecological diversification. Previous reports suggest HGT of antibacterial enzymes may have contributed to the insect immune response and limit bacterial growth. Carnivorous insects also display many evolutionary successful lineages, but in contrast to the plant feeders, the potential role of HGTs has been less well-studied., Results: Using genomic and transcriptomic data from 38 species of ladybird beetles, we identified a set of bacterial cell wall hydrolase (cwh) genes acquired by this group of beetles. Infection with Bacillus subtilis led to upregulated expression of these ladybird cwh genes, and their recombinantly produced proteins limited bacterial proliferation. Moreover, RNAi-mediated cwh knockdown led to downregulation of other antibacterial genes, indicating a role in antibacterial immune defense. cwh genes are rare in eukaryotes, but have been maintained in all tested Coccinellinae species, suggesting that this putative immune-related HGT event played a role in the evolution of this speciose subfamily of predominant predatory ladybirds., Conclusion: Our work demonstrates that, in a manner analogous to HGT-facilitated plant feeding, enhanced immunity through HGT might have played a key role in the prey adaptation and niche expansion that promoted the diversification of carnivorous beetle lineages. We believe that this represents the first example of immune-related HGT in carnivorous insects with an association with a subsequent successful species radiation.
- Published
- 2021
- Full Text
- View/download PDF
45. Correction to: Genome-enabled insights into the biology of thrips as crop pests.
- Author
-
Rotenberg D, Baumann AA, Ben-Mahmoud S, Christiaens O, Dermauw W, Ioannidis P, Jacobs CGC, Vargas Jentzsch IM, Oliver JE, Poelchau MF, Rajarapu SP, Schneweis DJ, Snoeck S, Taning CNT, Wei D, Widana Gamage SMK, Hughes DST, Murali SC, Bailey ST, Bejerman NE, Holmes CJ, Jennings EC, Rosendale AJ, Rosselot A, Hervey K, Schneweis BA, Cheng S, Childers C, Simão FA, Dietzgen RG, Chao H, Dinh H, Doddapaneni HV, Dugan S, Han Y, Lee SL, Muzny DM, Qu J, Worley KC, Benoit JB, Friedrich M, Jones JW, Panfilio KA, Park Y, Robertson HM, Smagghe G, Ullman DE, van der Zee M, Van Leeuwen T, Veenstra JA, Waterhouse RM, Weirauch MT, Werren JH, Whitfield AE, Zdobnov EM, Gibbs RA, and Richards S
- Abstract
An amendment to this paper has been published and can be accessed via the original article.
- Published
- 2020
- Full Text
- View/download PDF
46. Four myriapod relatives - but who are sisters? No end to debates on relationships among the four major myriapod subgroups.
- Author
-
Szucsich NU, Bartel D, Blanke A, Böhm A, Donath A, Fukui M, Grove S, Liu S, Macek O, Machida R, Misof B, Nakagaki Y, Podsiadlowski L, Sekiya K, Tomizuka S, Von Reumont BM, Waterhouse RM, Walzl M, Meng G, Zhou X, Pass G, and Meusemann K
- Subjects
- Animals, Transcriptome, Arthropods classification, Arthropods genetics, Phylogeny
- Abstract
Background: Phylogenetic relationships among the myriapod subgroups Chilopoda, Diplopoda, Symphyla and Pauropoda are still not robustly resolved. The first phylogenomic study covering all subgroups resolved phylogenetic relationships congruently to morphological evidence but is in conflict with most previously published phylogenetic trees based on diverse molecular data. Outgroup choice and long-branch attraction effects were stated as possible explanations for these incongruencies. In this study, we addressed these issues by extending the myriapod and outgroup taxon sampling using transcriptome data., Results: We generated new transcriptome data of 42 panarthropod species, including all four myriapod subgroups and additional outgroup taxa. Our taxon sampling was complemented by published transcriptome and genome data resulting in a supermatrix covering 59 species. We compiled two data sets, the first with a full coverage of genes per species (292 single-copy protein-coding genes), the second with a less stringent coverage (988 genes). We inferred phylogenetic relationships among myriapods using different data types, tree inference, and quartet computation approaches. Our results unambiguously support monophyletic Mandibulata and Myriapoda. Our analyses clearly showed that there is strong signal for a single unrooted topology, but a sensitivity of the position of the internal root on the choice of outgroups. However, we observe strong evidence for a clade Pauropoda+Symphyla, as well as for a clade Chilopoda+Diplopoda., Conclusions: Our best quartet topology is incongruent with current morphological phylogenies which were supported in another phylogenomic study. AU tests and quartet mapping reject the quartet topology congruent to trees inferred with morphological characters. Moreover, quartet mapping shows that confounding signal present in the data set is sufficient to explain the weak signal for the quartet topology derived from morphological characters. Although outgroup choice affects results, our study could narrow possible trees to derivatives of a single quartet topology. For highly disputed relationships, we propose to apply a series of tests (AU and quartet mapping), since results of such tests allow to narrow down possible relationships and to rule out confounding signal.
- Published
- 2020
- Full Text
- View/download PDF
47. Genome-enabled insights into the biology of thrips as crop pests.
- Author
-
Rotenberg D, Baumann AA, Ben-Mahmoud S, Christiaens O, Dermauw W, Ioannidis P, Jacobs CGC, Vargas Jentzsch IM, Oliver JE, Poelchau MF, Rajarapu SP, Schneweis DJ, Snoeck S, Taning CNT, Wei D, Widana Gamage SMK, Hughes DST, Murali SC, Bailey ST, Bejerman NE, Holmes CJ, Jennings EC, Rosendale AJ, Rosselot A, Hervey K, Schneweis BA, Cheng S, Childers C, Simão FA, Dietzgen RG, Chao H, Dinh H, Doddapaneni HV, Dugan S, Han Y, Lee SL, Muzny DM, Qu J, Worley KC, Benoit JB, Friedrich M, Jones JW, Panfilio KA, Park Y, Robertson HM, Smagghe G, Ullman DE, van der Zee M, Van Leeuwen T, Veenstra JA, Waterhouse RM, Weirauch MT, Werren JH, Whitfield AE, Zdobnov EM, Gibbs RA, and Richards S
- Subjects
- Animals, Crops, Agricultural, Feeding Behavior, Food Chain, Immunity, Innate genetics, Perception, Phylogeny, Reproduction genetics, Thysanoptera genetics, Thysanoptera immunology, Genome, Insect, Life History Traits, Thysanoptera physiology, Transcriptome
- Abstract
Background: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set., Results: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta., Conclusions: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.
- Published
- 2020
- Full Text
- View/download PDF
48. Brain microRNAs among social and solitary bees.
- Author
-
Kapheim KM, Jones BM, Søvik E, Stolle E, Waterhouse RM, Bloch G, and Ben-Shahar Y
- Abstract
Evolutionary transitions to a social lifestyle in insects are associated with lineage-specific changes in gene expression, but the key nodes that drive these regulatory changes are unknown. We examined the relationship between social organization and lineage-specific microRNAs (miRNAs). Genome scans across 12 bee species showed that miRNA copy-number is mostly conserved and not associated with sociality. However, deep sequencing of small RNAs in six bee species revealed a substantial proportion (20-35%) of detected miRNAs had lineage-specific expression in the brain, 24-72% of which did not have homologues in other species. Lineage-specific miRNAs disproportionately target lineage-specific genes, and have lower expression levels than shared miRNAs. The predicted targets of lineage-specific miRNAs are not enriched for genes with caste-biased expression or genes under positive selection in social species. Together, these results suggest that novel miRNAs may coevolve with novel genes, and thus contribute to lineage-specific patterns of evolution in bees, but do not appear to have significant influence on social evolution. Our analyses also support the hypothesis that many new miRNAs are purged by selection due to deleterious effects on mRNA targets, and suggest genome structure is not as influential in regulating bee miRNA evolution as has been shown for mammalian miRNAs., Competing Interests: The authors declare no competing interests., (© 2020 The Authors.)
- Published
- 2020
- Full Text
- View/download PDF
49. Sawfly Genomes Reveal Evolutionary Acquisitions That Fostered the Mega-Radiation of Parasitoid and Eusocial Hymenoptera.
- Author
-
Oeyen JP, Baa-Puyoulet P, Benoit JB, Beukeboom LW, Bornberg-Bauer E, Buttstedt A, Calevro F, Cash EI, Chao H, Charles H, Chen MM, Childers C, Cridge AG, Dearden P, Dinh H, Doddapaneni HV, Dolan A, Donath A, Dowling D, Dugan S, Duncan E, Elpidina EN, Friedrich M, Geuverink E, Gibson JD, Grath S, Grimmelikhuijzen CJP, Große-Wilde E, Gudobba C, Han Y, Hansson BS, Hauser F, Hughes DST, Ioannidis P, Jacquin-Joly E, Jennings EC, Jones JW, Klasberg S, Lee SL, Lesný P, Lovegrove M, Martin S, Martynov AG, Mayer C, Montagné N, Moris VC, Munoz-Torres M, Murali SC, Muzny DM, Oppert B, Parisot N, Pauli T, Peters RS, Petersen M, Pick C, Persyn E, Podsiadlowski L, Poelchau MF, Provataris P, Qu J, Reijnders MJMF, von Reumont BM, Rosendale AJ, Simao FA, Skelly J, Sotiropoulos AG, Stahl AL, Sumitani M, Szuter EM, Tidswell O, Tsitlakidis E, Vedder L, Waterhouse RM, Werren JH, Wilbrandt J, Worley KC, Yamamoto DS, van de Zande L, Zdobnov EM, Ziesmann T, Gibbs RA, Richards S, Hatakeyama M, Misof B, and Niehuis O
- Subjects
- Amino Acid Sequence, Animals, Conserved Sequence, DNA Transposable Elements, Female, Gene Dosage, Glycoproteins genetics, Herbivory genetics, Immunity genetics, Insect Proteins genetics, Male, Multigene Family, Receptors, Odorant genetics, Social Behavior, Vision, Ocular genetics, Genetic Speciation, Genome, Insect, Host-Parasite Interactions genetics, Hymenoptera genetics
- Abstract
The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts., (© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2020
- Full Text
- View/download PDF
50. Developmental plasticity shapes social traits and selection in a facultatively eusocial bee.
- Author
-
Kapheim KM, Jones BM, Pan H, Li C, Harpur BA, Kent CF, Zayed A, Ioannidis P, Waterhouse RM, Kingwell C, Stolle E, Avalos A, Zhang G, McMillan WO, and Wcislo WT
- Subjects
- Animals, Bees genetics, Behavior, Animal, Biological Evolution, Evolution, Molecular, Female, Genome, Insect, Insect Proteins genetics, Insect Proteins metabolism, Male, Metamorphosis, Biological, Social Behavior, Bees growth & development, Bees physiology
- Abstract
Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species ( Megalopta genalis ) that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality. We find that differences in social behavior are derived from genes that also regulate sex differentiation and metamorphosis. Positive selection on social traits is influenced by the function of these genes in development. We further identify evidence that social polyphenisms may become encoded in the genome via genetic changes in regulatory regions, specifically in transcription factor binding sites. Taken together, our results provide evidence that developmental plasticity provides the substrate for evolutionary novelty and shapes the selective landscape for molecular evolution in a major evolutionary innovation: Eusociality., Competing Interests: The authors declare no competing interest., (Copyright © 2020 the Author(s). Published by PNAS.)
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.