Dana Hellemann, Ines Bartl, Maren Voss, Christophe Rabouille, Kirstin Schulz, Susanna Hietanen, Petra Tallberg, Environmental Sciences, Marine Ecosystems Research Group, Aquatic Biogeochemistry Research Unit (ABRU), Ecosystems and Environment Research Programme, University Management, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), University of Helsinki, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Océan et Interfaces (OCEANIS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Helmholtz-Gemeinschaft = Helmholtz Association, European UnionEuropean Union (EU) [2112932-1], Academy of FinlandAcademy of Finland [2112932-1, 272964, 303774, 267112], Bundesministerium fur Bildung und ForschungFederal Ministry of Education and Research (BMBF) [03F0683A], Chancellor's Travel Grant of the University of Helsinki, Onni-Talas Foundation, Dutch STW project 'Sediment for the salt marshes physical and ecological aspects of a mud motor' [13888], Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Estuaries worldwide are known to act as filters of land-derived N loads, yet their variable environmental settings can affect microbial nitrogen (N) retention and removal and thus the coastal filter function. We investigated microbial N-retention (nitrification, ammonium assimilation) and N-removal (denitrification, anammox) in the aphotic benthic systems (here defined as: bottom boundary layer [BBL] and sediment) of two Baltic Sea estuaries that differ in riverine N loads, trophic state, bottom topography, and sediment type. Contrary to our expectations, nitrification rates (5–227 nmol L−1 d−1) in the BBL neither differed between the eutrophied Vistula estuary and the oligotrophic Öre estuary, nor between seasons. Ammonium assimilation rates were slightly higher in the oligotrophic Öre estuary in spring but did not differ between estuaries in summer (9–704 nmol L−1 d−1). In the sediment, no anammox was found in either estuary and denitrification rates were higher in the eutrophied (349 ± 117 µmol N m−2 d−1) than in the oligotrophic estuary (138 ± 47 µmol N m−2 d−1). Irrespective of their differences, in both estuaries the quality of the mainly phytoplankton-derived particulate organic matter (POM) – evaluated by means of C : N and POC : Chl.a ratios – seemed to control N-cycling processes through the availability of particulate organic N and C as substrate sources. Our data suggest, that in stratified estuaries, phytoplankton-derived POM is an essential link between riverine N loads and benthic N cycling and may function as a temporary N reservoir via long particle residence time or coastal parallel transport. Even at low process rates, effective coastal filtering would thus be achieved by the increased time available for the recycling of N via microbial retention processes until its permanent removal via denitrification.