Flexible circuits, also known as flexible printed circuit boards, were originally developed in the 1950s for interconnection between multiple electronic devices when flexibility and movement were required. Nowadays, flexible circuits can be used for implementing electronic systems much more complicated than just interconnections. A commonly seen material combination of flexible circuits is copper foils laminated on polyimide substrates, although these solutions are both expensive and environmentally hazardous. With developments in printed electronics, many non-conventional materials can be used in fabricating flexible circuits that have advantages such as increased flexibility, low cost, a small environmental impact, etc. In addition, fast and efficient manufacturing methods can produce flexible electronics in large volumes. This opens a window of opportunity to create electronic systems over geometrically large areas. This thesis proposes methods and guidelines for how to implement largearea electronic devices using non-conventional flexible materials and technologies. The thesis specifically focuses on electronic systems that integrate both digital and analogue signals. Further, it demonstrates and provides examples of how signals in the microwave frequencies, commonly requiring expensive materials, can be handled with non-conventional materials and technologies. Several conductor-substrate material combinations are used, which are fabricated using industrial processes. The conductor materials include conductive inks, copper foils, and aluminium foils, while the substrate materials comprise papers, a nonwoven fabric, and a polyimide. In particular, methods are investigated in order to achieve a low DC resistance in printed conductiveink-based tracks, which opens the possibilities for them to be used in highcurrent applications. Several surface mounting techniques are developed for incorporating surface mount devices within the fabricated flexible circuits, includi, Flexibla kretsar, även kända som flexibla tryckta kretskort, utvecklades ursprungligen på 1950-talet för sammankoppling mellan flera elektroniska enheter när flexibilitet och rörelse var nödvändig. Numera kan flexibla kretsar användas för att implementera elektroniska system som är mycket mer komplicerade än bara sammankopplingar. En vanligt sett materialkombination av flexibla kretsar är kopparfolier laminerade på polyimid-substrat, även om dessa lösningar är både dyra och miljöfarliga. Med utvecklingen inom tryckt elektronik kan många icke-konventionella material användas för att tillverka flexibla kretsar som har fördelar såsom ökad flexibilitet, låg kostnad, en liten miljöpåverkan, etc. I tillägg kan snabba och effektiva tillverkningsmetoder producera flexibel elektronik i stora volymer. Detta öppnar ett fönster av möjligheter att skapa elektroniska system över geometriskt stora områden. Flera kombinationer av material för ledare och substrat används i denna avhandling, som tillverkas med industriella processer. Ledarmaterialen inkluderar ledande bläck, kopparfolier och aluminiumfolier, medan substraten innefattar papper, ett nonwoven-tyg och en polyimid. I synnerhet undersöks metoder för att uppnå låg DC-resistans i tryckta bläckbaserade ledare, vilket också möjliggör användning i högströmstillämpningar. Flera ytmonteringsmetoder utvecklas för att införliva ytmonterade komponenter i de tillverkade flexibla kretsarna, inklusive användning av lödpasta med låg temperatur, isotropa ledande lim och anisotropa ledande lim. Vissa av teknikerna har uppnått tillräckligt lågt kontaktmotstånd och adekvata komponentbindningsstyrkor och kan således användas vid implementering av hybridelektroniska system. Dessutom har de flesta tekniker potentialen att användas i automatiserade komponentmonteringslinjer. Som demonstrator implementeras två antennsystem för kommersiella RFID-läsare som arbetar med högfrekvensband (13.56 MHz) och ultrahögfrekvensband (867 MHz), som innefattar, Vid tidpunkten för disputationen var följande delarbete opublicerat: delarbete V (manuskript).At the time of the doctoral defence the following paper was unpublished: paper V (manuscript)., IDPOS, SmartArea