Back to Search Start Over

Endophytic Fungi from Dalbergia odorifera T. Chen Producing Naringenin Inhibit the Growth of Staphylococcus aureus by Interfering with Cell Membrane, DNA, and Protein.

Authors :
Gao, Yuan
Ji, Yubin
Li, Wenlan
Luo, Jianghan
Wang, Fuling
Zhang, Xiaomeng
Niu, Zhihui
Zhou, Lulu
Yan, Lijun
Source :
Journal of Medicinal Food. Feb2021, Vol. 24 Issue 2, p116-123. 8p.
Publication Year :
2021

Abstract

This study focused on the antibacterial effects of the endophytic fungi producing naringenin from Dalbergia odorifera T. Chen against Staphylococcus aureus. The antibacterial activity was measured by the inhibition diameters, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The time-killing curve was also used to evaluate its antibacterial efficacy. The results of antibacterial activity determinations showed that endophytic fungi secondary metabolites can inhibit the growth of five pathogenic bacteria (S. aureus, Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, and Bacillus subtilis) and the most sensitive strain was S. aureus that had the MIC and MBC values of 0.13 and 0.50 mg/mL, respectively. The membrane permeability study was measured by a DNA leakage assay and electrical conductivity assay. Furthermore, the whole-cell protein lysates and DNA fragmentation assay was evaluated. The morphology of S. aureus treated with the endophytic fungi products was observed by scanning electron microscopy (SEM). The probable antibacterial mechanism of endophytic fungi secondary metabolites was the increased membrane permeability that leads to leaks of nucleic acids and proteins. SEM results further confirmed that the extracts can interfere with the integrity of S. aureus cell membrane and further inhibit the growth of bacteria, resulting in the death of bacteria. This study provides a new perspective for the antibacterial functions of endophytic fungi secondary metabolites for biomedical applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1096620X
Volume :
24
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Medicinal Food
Publication Type :
Academic Journal
Accession number :
148855590
Full Text :
https://doi.org/10.1089/jmf.2020.4686