Back to Search Start Over

Ion motion above a biased wafer in a plasma etching reactor.

Authors :
Qian, Yuchen
Gekelman, Walter
Pribyl, Patrick
Piskin, Tugba
Paterson, Alex
Source :
Physics of Plasmas. Jun2024, Vol. 31 Issue 6, p1-15. 15p.
Publication Year :
2024

Abstract

The behavior of ions in the plasma is an essential component in the process of industrial etching. We studied the motions and energy distribution of argon ions in a inductively coupled plasma (ICP) etching tool, by the method of laser induced fluorescence (LIF). The silicon wafer clamped to a chuck at the bottom of the chamber was biased with a 1 MHz 1–1.2 kV peak-to-peak sinusoidal voltage. The plasma is formed with a 2 MHz ICP coil pulsed at 10 Hz. Sheath thickness was measured at different phases of the bias waveform. The experiment also compared the ion motions with and without wafer bias, as well as different switch-on time of wafer bias. For all cases, ion energy distribution functions and the two-dimensional flow pattern were studied near the center and edge of the wafer. Significant vortex flows were observed near the wafer edge. Experiments in which the wafer was biased in the plasma afterglow resulted in a narrow distribution of ion energy close to the bias voltage at the vicinity of the wafer, and the ion incident angle on the wafer was the smallest. The results were compared to simulations using the Hybrid Plasma Equipment Model code. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1070664X
Volume :
31
Issue :
6
Database :
Academic Search Index
Journal :
Physics of Plasmas
Publication Type :
Academic Journal
Accession number :
178147757
Full Text :
https://doi.org/10.1063/5.0206860