Back to Search Start Over

High-fluence Si-implanted diamond: Optimum implantation temperature for SiC formation.

Authors :
Weishart, H.
Eichhorn, F.
Heera, V.
Pécz, B.
Barna, Á.
Skorupa, W.
Source :
Journal of Applied Physics. 8/15/2005, Vol. 98 Issue 4, p043503. 6p. 1 Black and White Photograph, 1 Chart, 7 Graphs.
Publication Year :
2005

Abstract

In this paper the authors investigate the effect of implantation temperature on the structural properties of diamond implanted with high fluences of Si between 5.3×1017 Si cm-2 and 1×1018 Si cm-2. In order to reduce radiation-induced damage and to enhance SiC formation the implantations were performed at elevated temperatures in the range from 900 to 1200 °C. Subsequently, all samples were annealed for 10 min at 1500 °C in a rf-heated furnace. X-ray diffraction revealed the formation of cubic SiC nanocrystallites in a buried layer inside the implanted diamond. The implantation-induced damage was assessed by analyzing graphitization of the surface-near layer using Raman spectroscopy. With increasing Si fluence the implantation-induced damage rises and the nearly perfect alignment of the formed SiC crystallites within the host diamond lattice deteriorates. However, raising the implantation temperature from 900 to 1000 °C reduces the damage in the diamond and increases the amount, size, and epitaxial alignment of the crystalline SiC precipitates. Further increase of the implantation temperature gives no improvement in the quality of the SiC-rich layer. Instead, the damaged diamond converts into graphite and the formation of SiC crystallites is obstructed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
98
Issue :
4
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
18332648
Full Text :
https://doi.org/10.1063/1.2009073