Back to Search Start Over

GRK6 deficiency is associated with enhanced CXCR4-mediated neutrophil chemotaxis in vitro and impaired responsiveness to G-CSF in vivo.

Authors :
Vroon A
Heijnen CJ
Raatgever R
Touw IP
Ploemacher RE
Premont RT
Kavelaars A
Source :
Journal of leukocyte biology [J Leukoc Biol] 2004 Apr; Vol. 75 (4), pp. 698-704. Date of Electronic Publication: 2004 Jan 02.
Publication Year :
2004

Abstract

The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) signaling pathway is thought to play an important role in the induction of neutrophil mobilization from the bone marrow in response to granulocyte-colony stimulating factor (G-CSF) treatment. CXCR4 belongs to the family of G protein-coupled receptors. Multiple members of this receptor family are desensitized by agonist-induced G protein-coupled receptor kinase (GRK)-mediated phosphorylation. Here, we demonstrate that in vitro SDF-1-induced chemotaxis of bone marrow-derived neutrophils from GRK6-deficient mice is significantly enhanced and that desensitization of the calcium response to SDF-1 is impaired in GRK6-/- neutrophils. CXCR4 activation by SDF-1 provides a key retention signal for hematopoietic cells in the bone marrow. It is interesting that we observed that in the absence of GRK6, the G-CSF-induced increase in circulating neutrophils is profoundly impaired. Three days after injection of pegylated-G-CSF, significantly lower numbers of circulating neutrophils were observed in GRK6-/- as compared with wild-type (WT) mice. In addition, early/acute neutrophil mobilization in response to G-CSF (3 h after treatment) was also impaired in GRK6-/- mice. However, blood neutrophil levels in untreated GRK6-/- and WT mice were not different. Moreover, the percentage of neutrophils in the bone marrow after G-CSF treatment was increased to the same extent in WT and GRK6-/- mice, indicating that neutrophil production is normal in the absence of GRK6. However, the increased chemotactic sensitivity of GRK6-/- neutrophils to SDF-1 was retained after G-CSF treatment. In view of these data, we suggest that the impaired G-CSF-induced neutrophil mobilization in the absence of GRK6 may be a result of enhanced CXCR4-mediated retention of PMN in the bone marrow.

Details

Language :
English
ISSN :
0741-5400
Volume :
75
Issue :
4
Database :
MEDLINE
Journal :
Journal of leukocyte biology
Publication Type :
Academic Journal
Accession number :
14704365
Full Text :
https://doi.org/10.1189/jlb.0703320