1. Impact of Hard Carbon Properties on Their Performance in Potassium-Ion Batteries
- Author
-
Louiza Larbi, Badre Larhrib, Adrian Beda, Lénaïc Madec, Laure Monconduit, Camelia Matei Ghimbeu, Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM), Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Charles Gerhardt Montpellier - Institut de Chimie Moléculaire et des Matériaux de Montpellier (ICGM), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), Université de Montpellier (UM), Réseau sur le stockage électrochimique de l'énergie (RS2E), Aix Marseille Université (AMU)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Collège de France (CdF (institution))-Université de Picardie Jules Verne (UPJV)-Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)-Nantes Université (Nantes Univ)-Université de Montpellier (UM)-Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), and ANR-19-CE05-0026,TROPIC,Vers des batteries innovantes K-ion(2019)
- Subjects
Energy storage ,Hard carbon ,Materials Chemistry ,Electrochemistry ,[CHIM]Chemical Sciences ,Energy Engineering and Power Technology ,Chemical Engineering (miscellaneous) ,Graphite ,Potassium-ion batteries ,Electrical and Electronic Engineering ,Anodes - Abstract
International audience; This work reports on the synthesis of hard carbon spheres (HCS) and the impact of the pyrolysis temperature (1500 to 1900 °C) on the properties of HC and its relationship with the electrochemical performance in potassium-ion batteries (KIBs). Comparison with commercial graphite performance is provided as well. Spherical morphology, disordered structure, and low surface area were obtained for the HCSs. Most properties (interlayer space, active surface area, and oxygen-based functional groups) were found to decrease with increasing pyrolysis temperature, except for the helium density and closed porosity, which increase. However, graphite presents a flake-like morphology with a larger particle size, a higher helium density, an ordered structure with a smaller interlayer distance, and no closed pores. Electrochemical tests in a half-cell vs K+/K showed that HCSs perform better than graphite with higher initial Coulombic efficiency (ICE) and better specific capacities. The HCSs pyrolyzed at 1500 and 1700 °C exhibit the best initial Coulombic efficiency, ICEs of 54 and 62%, and specific capacities of 254 and 247 mAh g–1 (C/20, 11.5 mA g–1), respectively. The ICE is affected by multiple surface and bulk parameters but also by electrolyte formulation (67% for 0.8 M KFSI vs 62% for 0.8 M KPF6). The capacity is governed by diffusive phenomena, and a larger interlayer graphitic spacing and defects favor a better insertion of K ions. Closed pores did not lead to an improvement in capacity. Furthermore, HCSs exhibit significantly better capacity retention (97%) than graphite (84%), especially when cycled at high current rates (up to 10C depotassiation rate).
- Published
- 2023