1. A Study of Intelligent Paper Grouping Model for Adult Higher Education Based on Random Matrix.
- Author
-
Wang, Yan
- Subjects
ADULT education ,HIGHER education ,RANDOM matrices ,DATABASE design ,CHAOS theory ,COMPUTER architecture ,PARTICLE swarm optimization ,COVARIANCE matrices - Abstract
This paper presents a comprehensive study and analysis of the intelligent grouping of papers in adult higher education using a random matrix approach. Using the results of random matrix theory on the eigenvalues of the sample covariance matrix, the energy of each subspace is estimated, and the estimated energy is then used to construct a subspace weighting matrix. The statistical properties of the sample covariance matrix eigenvectors are analyzed using the first-order perturbation approximation, and then, asymptotic results from random matrix theory on the projection of the sample covariance matrix signal subspace to the real signal parametrization are used to obtain the weighting matrix based on the random matrix eigenvectors. Dynamic adjustment according to the fitness of individuals in the population is performed to ensure population diversity, while the combination of the small habitat technique can avoid the algorithm from falling into early convergence. The algorithm introduces chaos theory to optimize the population initialization process and uses the dynamic traversal randomness of chaos to select individuals in the population so that the initial population is close to the desired target solution. The design of the fitness function in the genetic algorithm generally maps the objective function of the problem to the fitness function. A good fitness function can directly reflect the quality of the individuals in the group. Based on the in-depth study of the basic attributes of the test questions and the principles of test paper evaluation, the mathematical model and objective function of intelligent paper grouping are determined by the difficulty, knowledge points, and cognitive level of the test questions as the main constraints, and NCAGA is applied to the intelligent paper grouping method, which better completes the intelligent paper grouping session for the computer system architecture course. In the process of designing the intelligent grouping algorithm, for the situations of premature convergence and convergence to locally optimal solutions that easily occur in the traditional genetic algorithm, this paper adopts the approach of adaptive adjustment of crossover probability and variation probability to improve the algorithm and achieves satisfactory results. Based on extensive business research, this paper completes the requirement analysis of the online practice system based on the intelligent grouping of papers and presents the functional design and database design of the key functional modules in the system in detail. Finally, this paper conducts functional tests on the system and analyses the test results. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF