1. Properties of sodium caseinate as affected by the β-casein phenotypes
- Author
-
Davor Daniloski, Noel A. McCarthy, Martin J. Auldist, and Todor Vasiljevic
- Subjects
Biomaterials ,Phenotype ,Colloid and Surface Chemistry ,Emulsifying Agents ,Sodium ,Animals ,Caseins ,Cattle ,Emulsions ,Female ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials - Abstract
The aim of the study was to investigate the properties of sodium caseinate dispersions and oil-in-water emulsions obtained from cows' milk of either A1/A1, A1/A2, or A2/A2 β-casein phenotype. Protein structural characterisation was examined using Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopies, with physicochemical and interfacial properties assessed by analysing adsorbed protein content, hydrophobicity, solubility, and emulsion stability of the samples. Results showed variations in the secondary structure of all samples dependent of the presence of A1 or A2 β-caseins. The main differences included greater amounts of α-helix and β-sheet in A1/A1 and A1/A2 sodium caseinate dispersions that influenced their lower solubility, while random coils/polyproline II helixes were found only in A2/A2 sodium caseinate dispersion. In contrast, upon adsorption on the interface of A2/A2 sodium caseinate emulsion, the protein adopted ordered conformational motifs. This conformational shift supposedly arose from structural differences between the two β-casein proteoforms, which most likely enhanced the emulsion properties of A2/A2 sodium caseinate compared to either A1/A1 or A1/A2 sodium caseinates. The A2 β-casein in both, A1/A2 and A2/A2 sodium caseinates, appears to be able to more rapidly reach the oil droplet surface and was more efficient as emulsifying agent. The current results demonstrated that the conformational rearrangement of proteins upon adsorption to emulsion interfaces was dependent not only on hydrophobicity and on solubility, but also on the conformational flexibility of A1/A1, A1/A2, and A2/A2 β-casein phenotypes. These findings can assist in predicting the behaviour of sodium caseinates during relevant industrial processing.
- Published
- 2022
- Full Text
- View/download PDF