1. Hybrid Analog-Digital Learning with Differential RRAM Synapses
- Author
-
E. Nowak, J-M. Portal, Jacques-Olivier Klein, Marc Bocquet, Damien Querlioz, E. Vianello, Maxence Ernoult, Tifenn Hirtzlin, Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,0303 health sciences ,Artificial neural network ,Computer science ,Overhead (engineering) ,Process (computing) ,01 natural sciences ,Resistive random-access memory ,Power (physics) ,03 medical and health sciences ,CMOS ,0103 physical sciences ,Electronic engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Digital learning ,Reset (computing) ,030304 developmental biology - Abstract
International audience; Exploiting the analog properties of RRAM cells for learning is a compelling approach, but which raises important challenges in terms of CMOS overhead, impact of device imperfections and device endurance. In this work, we investigate a learning-capable architecture, based on the concept of Binarized Neural Networks, which addresses these three issues. It exploits the analog properties of the weak RESET in hafnium-oxide RRAM cells, but uses exclusively compact and low power digital CMOS. This approach requires no refresh process, is more robust to device imperfections than more conventional analog approaches, and we show that due to the reliance on weak RESETs, the devices show outstanding endurance that can withstand multiple learning processes.
- Published
- 2019
- Full Text
- View/download PDF