1. Numerical analysis for an energy-stable total discretization of a poromechanics model with inf-sup stability
- Author
-
Philippe Moireau, Dominique Chapelle, Bruno Burtschell, Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université Paris-Saclay, École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris)
- Subjects
Spacetime ,Discretization ,energy estimates ,Applied Mathematics ,Numerical analysis ,Poromechanics ,poromechanics ,010103 numerical & computational mathematics ,incompressibility ,01 natural sciences ,Stability (probability) ,010101 applied mathematics ,inf-sup ,Nonlinear system ,[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph] ,Compressibility ,Applied mathematics ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0101 mathematics ,total discretization ,Energy (signal processing) ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Mathematics - Abstract
International audience; We consider a previously proposed general nonlinear poromechanical formulation, and we derive a linearized version of this model. For this linearized model, we obtain an existence result and we propose a complete discretization strategy - in time and space - with a special concern for issues associated with incompressible or nearly-incompressible behavior. We provide a detailed mathematical analysis of this strategy, the main result being an error estimate uniform with respect to the compressibility parameter. We then illustrate our approach with detailed simulation results and we numerically investigate the importance of the assumptions made in the analysis, including the fulfillment of specific inf-sup conditions.
- Published
- 2019
- Full Text
- View/download PDF