1. Effects of Magnetic Fields on Gas Dynamics and Star Formation in Nuclear Rings
- Author
-
Sanghyuk Moon, Woong-Tae Kim, Chang-Goo Kim, and Eve C. Ostriker
- Subjects
Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Astrophysics of Galaxies - Abstract
Nuclear rings at the centers of barred galaxies are known to be strongly magnetized. To explore the effects of magnetic fields on star formation in these rings and nuclear gas flows, we run magnetohydrodynamic simulations in which there is a temporally-constant magnetized inflow to the ring, representing a bar-driven inflow. The mass inflow rate is $1\,M_\odot\,\mathrm{yr}^{-1}$, and we explore models with a range of field strength in the inflow. We adopt the TIGRESS framework developed by Kim & Ostriker to handle radiative heating and cooling, star formation, and resulting supernova (SN) feedback. We find that magnetic fields are efficiently amplified in the ring due to rotational shear and SN feedback. Within a few $100\,\mathrm{Myr}$, the turbulent component $B_\mathrm{trb}$ in the ring saturates at $\sim 35\,\mu\mathrm{G}$ (in rough equipartition with the turbulent kinetic energy density), while the regular component $B_\mathrm{reg}$ exceeds $50\,\mu\mathrm{G}$. Expanding superbubbles created by clustered SN explosions vertically drag predominantly-toroidal fields from near the midplane to produce poloidal fields in high-altitude regions. The growth of magnetic fields greatly suppresses star formation at late times. Simultaneously, strong magnetic tension in the ring drives radially inward accretion flows from the ring to form a circumnuclear disk in the central region; this feature is absent in the unmagnetized model., Comment: 29 pages, 17 figures, accepted for publication in ApJ
- Published
- 2023
- Full Text
- View/download PDF