1. A Robust Method for MR Image Segmentation and Multiple Scleroses Detection
- Author
-
Hakima Zouaoui, Abdelmalik Taleb-Ahmed, Abdelouahab Moussaoui, Mourad Oussalah, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), COMmunications NUMériques - IEMN (COMNUM - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - Département Opto-Acousto-Électronique - UMR 8520 (IEMN-DOAE), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France), Université Ferhat-Abbas Sétif 1 [Sétif] (UFAS1), University of Oulu, Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 (LAMIH), Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Centre National de la Recherche Scientifique (CNRS), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-Centrale Lille-Institut supérieur de l'électronique et du numérique (ISEN)-Université de Valenciennes et du Hainaut-Cambrésis (UVHC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF), and NONE FOUND.
- Subjects
Multiple Sclerosis ,Computer science ,business.industry ,Health Informatics ,Magnetic Resonance Imaging ,030218 nuclear medicine & medical imaging ,3. Good health ,ParticleSwarm Optimization ,[SPI]Engineering Sciences [physics] ,03 medical and health sciences ,Segmentation ,0302 clinical medicine ,Fuzzy C-Means ,Particle Swarm Optimization ,Radiology, Nuclear Medicine and imaging ,Computer vision ,Fuzzy Controller ,Artificial intelligence ,Mr images ,business ,030217 neurology & neurosurgery - Abstract
International audience; In the present article, we propose a new approach for the segmentation of the MR images of the Multiple Sclerosis (MS). The Magnetic Resonance Imaging (MRI) allows the visualization of the brain and it is widely used in the diagnosis and the follow-up of the patients suffering from MS. Aiming to automate a long and tedious process for the clinician, we propose the automatic segmentation of the MS lesions. Our algorithm of segmentation is composed of three stages: segmentation of the brain into regions using the algorithm Fuzzy Particle Swarm Optimization (FPSO) in order to obtain the characterization of the different healthy tissues (White matter, grey matter and cerebrospinal fluid (CSF)) after the extraction of white matter (WM), the elimination of the atypical data (outliers) of the white matter by the algorithm Fuzzy C-Means (FCM), finally, the use of a Mamdani-type fuzzy model to extract the MS lesions among all the absurd data.
- Published
- 2019
- Full Text
- View/download PDF