1. Spin-dependent boundary conditions for isotropic superconducting Green's functions
- Author
-
Audrey Cottet, Daniel Huertas-Hernando, Yuli V. Nazarov, Wolfgang Belzig, Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Norwegian University of Science and Technology [Trondheim] (NTNU), Norwegian University of Science and Technology (NTNU), Universitat Konstanz, University of Konstanz, Kavli Institute of Nanosciences [Delft] (KI-NANO), Delft University of Technology (TU Delft), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
pacs:85.75.-d ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Superconductivity (cond-mat.supr-con) ,Quantum mechanics ,Condensed Matter::Superconductivity ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,ddc:530 ,Boundary value problem ,010306 general physics ,Superconductivity ,Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Scattering ,Condensed Matter - Superconductivity ,Isotropy ,Conductance ,Heterojunction ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Scattering amplitude ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,pacs:74.45.+c ,pacs:73.23.-b ,Ferromagnetism ,0210 nano-technology - Abstract
The quasiclassical theory of superconductivity provides the most successful description of diffusive heterostructures comprising superconducting elements, namely, the Usadel equations for isotropic Green's functions. Since the quasiclassical and isotropic approximations break down close to interfaces, the Usadel equations have to be supplemented with boundary conditions for isotropic Green's functions (BCIGF), which are not derivable within the quasiclassical description. For a long time, the BCIGF were available only for spin-degenerate tunnel contacts, which posed a serious limitation on the applicability of the Usadel description to modern structures containing ferromagnetic elements. In this article, we close this gap and derive spin-dependent BCIGF for a contact encompassing superconducting and ferromagnetic correlations. This finally justifies several simplified versions of the spin-dependent BCIGF, which have been used in the literature so far. In the general case, our BCIGF are valid as soon as the quasiclassical isotropic approximation can be performed. However, their use require the knowledge of the full scattering matrix of the contact, an information usually not available for realistic interfaces. In the case of a weakly polarized tunnel interface, the BCIGF can be expressed in terms of a few parameters, i.e. the tunnel conductance of the interface and five conductance-like parameters accounting for the spin-dependence of the interface scattering amplitudes. In the case of a contact with a ferromagnetic insulator, it is possible to find explicit BCIGF also for stronger polarizations. The BCIGF derived in this article are sufficienly general to describe a variety of physical situations and may serve as a basis for modelling realistic nanostructures., Comment: This paper presents an improvement of arXiv:cond-mat/0204116. The present version takes into account corrections from the erratum Phys. Rev. B 83, 139901 (2011)
- Published
- 2009
- Full Text
- View/download PDF