51. Bethe subalgebras of the group algebra of the symmetric group
- Author
-
E. Mukhin, Alexander Varchenko, and Vitaly Tarasov
- Subjects
Discrete mathematics ,Double affine Hecke algebra ,Algebra and Number Theory ,Mathematics::Operator Algebras ,Mathematics::Rings and Algebras ,Subalgebra ,Quantum algebra ,Group algebra ,Combinatorics ,Symmetric group ,Mathematics::Quantum Algebra ,Algebra representation ,Geometry and Topology ,Algebra over a field ,Mathematics::Representation Theory ,Commutative property ,Mathematics - Abstract
We introduce families \( \mathcal{B}_n^S\left( {{z_1},\ldots,{z_n}} \right) \) and \( \mathcal{B}_{{n,\hbar}}^S\left( {{z_1},\ldots,{z_n}} \right) \) of maximal commutative subalgebras, called Bethe subalgebras, of the group algebra \( \mathbb{C}\left[ {\mathfrak{S}n} \right] \) of the symmetric group. Bethe subalgebras are deformations of the Gelfand−Zetlin subalgebra of \( \mathbb{C}\left[ {\mathfrak{S}n} \right] \). We describe various properties of Bethe subalgebras.
- Published
- 2013
- Full Text
- View/download PDF