151. Towards Adaptive Classification using Riemannian Geometry approaches in Brain-Computer Interfaces
- Author
-
Fabien Lotte, Satyam Kumar, Florian Yger, Indian Institute of Technology Kanpur (IIT Kanpur), Popular interaction with 3d content (Potioc), Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), ANR-15-CE23-0013,REBEL,Redéfinir les Interfaces Cerveau-Ordinateur pour permettre à leurs utilisateurs d'en maitriser le contrôle(2015), European Project: 714567 ,H2020 Pilier ERC,BrainConquest(2017), and Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
- Subjects
Computer science ,0206 medical engineering ,02 engineering and technology ,Riemannian geometry ,Machine learning ,computer.software_genre ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,03 medical and health sciences ,symbols.namesake ,0302 clinical medicine ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Remannian Geometry ,BCI ,Brain–computer interface ,Index Terms-Remannian Geometry ,business.industry ,Adaptation strategies ,020601 biomedical engineering ,symbols ,Adaptive classifier ,[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET] ,Artificial intelligence ,business ,Classifier (UML) ,computer ,030217 neurology & neurosurgery ,Mental image - Abstract
International audience; The omnipresence of non-stationarity and noise in Electroencephalogram signals restricts the ubiquitous use of Brain-Computer interface. One of the possible ways to tackle this problem is to adapt the computational model used to detect and classify different mental states. Adapting the model will possibly help us to track the changes and thus reducing the effect of non-stationarities. In this paper, we present different adaptation strategies for state of the art Riemannian geometry based classifiers. The offline evaluation of our proposed methods on two different datasets showed a statistically significant improvement over baseline non-adaptive classifiers. Moreover, we also demonstrate that combining different (hybrid) adaptation strategies generally increased the performance over individual adaptation schemes. Also, the improvement in average classification accuracy for a 3-class mental imagery BCI with hybrid adaption is as high as around 17% above the baseline non-adaptive classifier.
- Published
- 2019