325 results on '"[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA]"'
Search Results
2. A Hennings type invariant of 3-manifolds from a topological Hopf superalgebra
- Author
-
Ngoc Phu Ha, Laboratoire de Mathématiques de Bretagne Atlantique (LMBA), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Université de Bretagne Sud (UBS), Ha, Ngoc Phu, and Université de Brest (UBO)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Root of unity ,Mathematics::Rings and Algebras ,Geometric Topology (math.GT) ,Lie superalgebra ,16. Peace & justice ,Topology ,Mathematics::Geometric Topology ,57M27, 17B37 ,Superalgebra ,Mathematics - Geometric Topology ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,Ribbon ,FOS: Mathematics ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Quantum Algebra (math.QA) ,Geometry and Topology ,Invariant (mathematics) ,Mathematics::Representation Theory ,Mathematical Physics ,[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT] ,Mathematics - Abstract
We prove the unrolled superalgebra $\mathcal{U}_{\xi}^{H}\mathfrak{sl}(2|1)$ has a completion which is a ribbon superalgebra in a topological sense where $\xi$ is a root of unity of odd order. Using this ribbon superalgebra we construct its universal invariant of links. We use it to construct an invariant of $3$-manifolds of Hennings type.
- Published
- 2020
3. Les algèbres toroïdales quantiques et leur théorie des représentations
- Author
-
Mounzer, Elie and STAR, ABES
- Subjects
Théorie des représentations ,Groupe de tresses ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Braid group ,Representation theory ,Algèbres quantiques ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,Quantum algebras - Abstract
With every irreducible finite root system, one can associate the corresponding Drinfel'd-Jimbo quantum group. This is a Hopf algebra, which can be thought of as a deformation of the universal enveloping algebra of the Lie algebra of the same Cartan type. It naturally comes equipped with a universal R-matrix, thus providing solutions of the Yang-Baxter equation which plays a definitional role in the theoryof quantum integrable systems and underlies the algebraic Bethe ansatz.In case the initial root system is affine instead of finite, the resulting Drinfel'd-Jimbo quantum groups are known as quantum affine algebras. Drinfel'd proposedan alternative presentation of these algebras though, closer in spirit to their classiccurrent or loop presentation as Lie algebras. It is now widely referred to as the Drinfel'd presentation and was rigorously established by Damiani and Beck, making crucial use of Lusztig's affine braid group symmetries ; a quantum analogue of the classical Weyl group symmetries of simple Lie algebras. As one expects in view of the classical current Lie algebra case, Drinfel'd's presentation only depends on the underlying finite root system, i.e. the one with the extra affine simple root removed. Now it turns out that this inherently affine presentation still makes sense if, insteadof a finite root system, one takes an affine root system. In that case, the doubly affine algebra one obtains is known as a quantum toroidal algebra. Although the latter are believed to be relevant in various areas of theoretical physics,ranging from quantum integrable systems to CFT, not much is presently known about their representation theory. From a more mathematical perspective, the interest in these algebras essentially stems from the fact that, in type an_1, they are known to be Frobenius-Schur duals of the widely studied doubly affine Hecke algebras or DAHA originally introduced by Cherednik in order to prove MacDonald's conjectures. In this thesis, we study quantum toroidal algebras and their representation theory. In the first section, we construct a new presentation of the algebra using the braid group action on the generators and show the existence of an isomorphism between both presentations. This allows us to define a new triangular decomposition. Using these results, we define and classify highest t-weight representations. Finally, we generalize the action of the braid group to any root system., A toute algèbre de Lie sur le corps des complexes, nous pouvons lui associer le groupe quantique considéré comme généralisation de l’algèbre. C’est la déformation de l’algèbre enveloppante universelle. En prenant la limite q tend vers 1, nous retrouvons l’algèbre enveloppante universelle. L’algèbre de Lie possède une généralisation naturelle en dimension infinie qui est l’algèbre de Lie affine. La déformation de l’algèbre enveloppante d’une algèbre de Lie affine non-tordue nous permet de définir les algebres affines quantiques. Due à V.G. Drinfel’d les algèbres affines quantiques possèdent une deuxième réalisation en terme de générateurs de Drinfel’d. Cet isomorphisme est prouvé Par I. Damiani et J. Beck. Ceci nous permet de dire qu’on peut effectuer l’affinisation avant ou bien après la quantification. On a un diagramme commutative. En plus, on peut definir la quantification affine qui nous permet d’associer à toute algèbre de Lie de type finie une algèbre quantique affine dans la réalisation de Drinfel’d. Le procédé de quantification affine peut être effectué sur une algèbre affine non tordue. Ceci est la definition des algèbres toroidales quantiques. Le résultat est une algèbre qui est doublement affine. Dans cette thèse nous étudions les algèbres toroidales quantiques et leurs représentations. La première partie est consacrée à l’étude de l’algèbre toroidale quantique de type A1. Par action du groupe des tresses, nous construisons une nouvelle presentation de l’algèbre qui nous donne une nouvelle décomposition triangulaire. Dans la seconde partie, nous utilisons ce résultat pour définir et classifier les représentations simples de plus hauts t-poids. Finalement, nous généralisons les résultats de la première partie pour obtenir une action du groupe des tresses sur tout autres systèmes de racines.
- Published
- 2022
4. Davydov-Yetter cohomology and relative homological algebra
- Author
-
Faitg, Matthieu, Gainutdinov, Azat M., Schweigert, Christoph, Gainutdinov, Azat, and APPEL À PROJETS GÉNÉRIQUE 2018 - Algèbres de Hecke et Applications: Représentations, Noeuds et Physique - - AHA2018 - ANR-18-CE40-0001 - AAPG2018 - VALID
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,K-Theory and Homology (math.KT) ,[MATH] Mathematics [math] ,Mathematics::Algebraic Topology ,[MATH.MATH-CT] Mathematics [math]/Category Theory [math.CT] ,Physics::Fluid Dynamics ,Mathematics::K-Theory and Homology ,Mathematics::Category Theory ,Mathematics - Quantum Algebra ,Mathematics - K-Theory and Homology ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Representation Theory (math.RT) ,Mathematics - Representation Theory - Abstract
Davydov--Yetter (DY) cohomology classifies infinitesimal deformations of the monoidal structure of tensor functors and tensor categories. In this paper we provide new tools for the computation of the DY cohomology for finite tensor categories and exact functors between them. The key point is to realize DY cohomology as relative Ext groups. In particular, we prove that the infinitesimal deformations of a tensor category $\mathcal{C}$ are classified by the 3-rd self-extension group of the tensor unit of the Drinfeld center $\mathcal{Z}(\mathcal{C})$ relative to $\mathcal{C}$. From classical results on relative homological algebra we get a long exact sequence for DY cohomology and a Yoneda product for which we provide an explicit formula. Using the long exact sequence and duality, we obtain a dimension formula for the cohomology groups based solely on relatively projective covers which reduces a problem in homological algebra to a problem in representation theory, e.g. calculating the space of invariants in a certain object of $\mathcal{Z}(\mathcal{C})$. Thanks to the Yoneda product, we also develop a method for computing DY cocycles explicitly which are needed for applications in the deformation theory. We apply these tools to the category of finite-dimensional modules over a finite-dimensional Hopf algebra. We study in detail the examples of the bosonization of exterior algebras $\Lambda\mathbb{C}^k \rtimes \mathbb{C}[\mathbb{Z}_2]$, the Taft algebras and the small quantum group of $\mathfrak{sl}_2$ at a root of unity., Comment: v2: 54 pages, fixed a gap in the proof of Prop 3.10; v3: 63 pages, new results for factorisable Hopf algebras in Sec 5.5 and 6.4, Intro and Abstract improved, Prop 3.2 extended and references updated
- Published
- 2022
5. Multi-grounded partitions and character formulas
- Author
-
Jehanne Dousse, ISAAC KONAN, Dousse, Jehanne, Combinatoire, théorie des nombres (CTN), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,General Mathematics ,17B37, 17B65, 17B67, 05A17, 05E10, 11P81 ,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO] ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,Mathematics - Quantum Algebra ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,Representation Theory (math.RT) ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,Mathematics - Representation Theory - Abstract
We introduce a new generalisation of partitions, multi-grounded partitions, related to ground state paths indexed by dominant weights of Lie algebras. We use these to express characters of irreducible highest weight modules of Kac-Moody algebras of affine type as generating functions for multi-grounded partitions. This generalises the approach of our previous paper, where only irreducible highest weight modules with constant ground state paths were considered, to all ground state paths. As an application, we compute the characters of the level $1$ modules of the affine Lie algebras $A_{2n}^{(2)}(n\geq 2)$, $D_{n+1}^{(2)}(n\geq 2)$, $A_{2n-1}^{(1)}(n\geq 3)$, $B_{n}^{(1)}(n\geq 3)$, and $D_{n}^{(1)}(n\geq 4)$., 26 pages
- Published
- 2021
6. Knizhnik--Zamolodchikov functor for degenerate double affine Hecke algebras : algebraic theory
- Author
-
Liu, Wille and Liu, Wille Shih-Wei
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Mathematics (miscellaneous) ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,Representation Theory (math.RT) ,Mathematics::Representation Theory ,Mathematics - Representation Theory - Abstract
In this article, we define an algebraic version of the Knizhnik--Zamolodchikov functor for the degenerate double affine Hecke algebras (a.k.a. trigonometric Cherednik algebras). We compare it with the KZ monodromy functor constructed by Varagnolo--Vasserot. We prove the double centraliser property for our functor and give a characterisation of its kernel. We establish these results for a family of algebras, called quiver double Hecke algebras, which includes the degenerate double affine Hecke algebras as special cases., Comment: 47 pages, accepted by Represent. Theory
- Published
- 2020
- Full Text
- View/download PDF
7. Comprehension and quotient structures in the language of 2-categories
- Author
-
Melliès, Paul-André, Rolland, Nicolas, Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Melliès, Paul-André
- Subjects
FOS: Computer and information sciences ,Computer Science - Logic in Computer Science ,[INFO.INFO-LO] Computer Science [cs]/Logic in Computer Science [cs.LO] ,formal adjunctions ,categorical logic ,[MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT] ,[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] ,comprehension structures with section ,[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL] ,Mathematics::Category Theory ,FOS: Mathematics ,Category Theory (math.CT) ,ComputingMilieux_MISCELLANEOUS ,2-categories ,[INFO.INFO-FL] Computer Science [cs]/Formal Languages and Automata Theory [cs.FL] ,[INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS] ,[MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] ,inductive reasoning on algebras ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,path objects ,Theory of computation → Linear logic ,[INFO.INFO-PL]Computer Science [cs]/Programming Languages [cs.PL] ,[INFO.INFO-GT]Computer Science [cs]/Computer Science and Game Theory [cs.GT] ,coinductive reasoning on coalgebras ,quotient structures ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] ,Mathematics - Category Theory ,Theory of computation → Type theory ,Theory of computation → Logic and verification ,[MATH.MATH-CT] Mathematics [math]/Category Theory [math.CT] ,comprehension structures with image ,[INFO.INFO-PL] Computer Science [cs]/Programming Languages [cs.PL] ,Logic in Computer Science (cs.LO) ,Comprehension structures ,[MATH.MATH-LO]Mathematics [math]/Logic [math.LO] ,[INFO.INFO-MS] Computer Science [cs]/Mathematical Software [cs.MS] ,Theory of computation → Proof theory ,[INFO.INFO-CL] Computer Science [cs]/Computation and Language [cs.CL] ,[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] ,[INFO.INFO-GT] Computer Science [cs]/Computer Science and Game Theory [cs.GT] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-LO] Mathematics [math]/Logic [math.LO] ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] - Abstract
Lawvere observed in his celebrated work on hyperdoctrines that the set-theoretic schema of comprehension can be elegantly expressed in the functorial language of categorical logic, as a comprehension structure on the functor $p:\mathscr{E}\to\mathscr{B}$ defining the hyperdoctrine. In this paper, we formulate and study a strictly ordered hierarchy of three notions of comprehension structure on a given functor $p:\mathscr{E}\to\mathscr{B}$, which we call (i) comprehension structure, (ii) comprehension structure with section, and (iii) comprehension structure with image. Our approach is 2-categorical and we thus formulate the three levels of comprehension structure on a general morphism $p:\mathrm{\mathbf{E}}\to\mathrm{\mathbf{B}}$ in a 2-category $\mathscr{K}$. This conceptual point of view on comprehension structures enables us to revisit the work by Fumex, Ghani and Johann on the duality between comprehension structures and quotient structures on a given functor $p:\mathscr{E}\to\mathscr{B}$. In particular, we show how to lift the comprehension and quotient structures on a functor $p:\mathscr{E}\to\mathscr{B}$ to the categories of algebras or coalgebras associated to functors $F_{\mathscr{E}}:\mathscr{E}\to\mathscr{E}$ and $F_{\mathscr{B}}:\mathscr{B}\to\mathscr{B}$ of interest, in order to interpret reasoning by induction and coinduction in the traditional language of categorical logic, formulated in an appropriate 2-categorical way.
- Published
- 2020
- Full Text
- View/download PDF
8. Spectra of Quantum KdV Hamiltonians, Langlands Duality, and Affine Opers
- Author
-
David Hernandez, Edward Frenkel, and Hernandez, David
- Subjects
High Energy Physics - Theory ,[NLIN.NLIN-SI] Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI] ,Pure mathematics ,Quantum affine algebra ,FOS: Physical sciences ,Duality (optimization) ,Langlands dual group ,01 natural sciences ,Bethe ansatz ,Mathematics - Algebraic Geometry ,High Energy Physics::Theory ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,Quantum Algebra (math.QA) ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,Representation Theory (math.RT) ,0101 mathematics ,Connection (algebraic framework) ,Mathematics::Representation Theory ,Algebraic Geometry (math.AG) ,Mathematical Physics ,Physics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Ring (mathematics) ,Conjecture ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,010102 general mathematics ,Subalgebra ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,Statistical and Nonlinear Physics ,High Energy Physics - Theory (hep-th) ,010307 mathematical physics ,Exactly Solvable and Integrable Systems (nlin.SI) ,Mathematics - Representation Theory - Abstract
We prove a system of relations in the Grothendieck ring of the category O of representations of the Borel subalgebra of an untwisted quantum affine algebra U_q(g^) introduced in [HJ]. This system was discovered in [MRV1, MRV2], where it was shown that solutions of this system can be attached to certain affine opers for the Langlands dual affine Kac-Moody algebra of g^, introduced in [FF5]. Together with the results of [BLZ3, BHK], which enable one to associate quantum g^-KdV Hamiltonians to representations from the category O, this provides strong evidence for the conjecture of [FF5] linking the spectra of quantum g^-KdV Hamiltonians and affine opers for the Langlands dual affine algebra. As a bonus, we obtain a direct and uniform proof of the Bethe Ansatz equations for a large class of quantum integrable models associated to arbitrary untwisted quantum affine algebras, under a mild genericity condition. We also conjecture analogues of these results for the twisted quantum affine algebras and elucidate the notion of opers for twisted affine algebras, making a connection to twisted opers introduced in [FG]., 54 pages (v3: some examples added; opers for twisted affine algebras elucidated). Accepted for publication in Communications in Mathematical Physics
- Published
- 2018
9. Explicit Rieffel induction module for quantum groups
- Author
-
Damien Rivet, Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), and Rivet, Damien
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Algebra and Number Theory ,quantum groups ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,parabolic induction ,representation theory ,[MATH] Mathematics [math] ,Hilbert modules ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Geometry and Topology ,[MATH]Mathematics [math] ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,complex semi-simple groups ,Mathematical Physics - Abstract
For G an algebraic (or more generally, a bornological) quantum group and B a closed quantum subgroup of G, we build in this paper an induction module by explicitly defining an inner product which takes its value in the convolution algebra of B, as in the original approach of Rieffel [Rie74]. In this context, we study the link with the induction functor defined by Vaes. In the last part we illustrate our result with parabolic induction of complex semi-simple quantum groups with the approach suggested by Clare [Cla13][CCH16].
- Published
- 2019
10. Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit
- Author
-
Berthier, Michel, Mathématiques, Image et Applications - EA 3165 (MIA), Université de La Rochelle (ULR), and Berthier, Michel
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,[SCCO.NEUR]Cognitive science/Neuroscience ,[SCCO.NEUR] Cognitive science/Neuroscience ,Quantum Rebit ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Quantum states ,Jordan Algebras ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,Color Perception - Abstract
Inspired by the work of Resnikoff, which is described if full details in the first part of this two-part paper, we give a quantum description of the space P of perceived colors. We show that P is the effect space of a rebit, a real quantum qubit, whose state space S is isometric to the hyperbolic Klein disk K. This chromatic state space of perceived colors can be represented as a Bloch disk of real dimension 2 that coincides with the Hering disk given by the color opponency mechanism. Attributes of perceived colors, hue and saturation, are defined in terms of Von Neumann entropy.
- Published
- 2019
11. On representations of semidirect products of a compact quantum group with a finite group
- Author
-
Wang, Hua, Département de Mathématiques et Applications - ENS Paris (DMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Wang, Hua, Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), and École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Mathematics::Operator Algebras ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,Mathematics - Operator Algebras ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,[MATH.MATH-CT] Mathematics [math]/Category Theory [math.CT] ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,[MATH.MATH-KT] Mathematics [math]/K-Theory and Homology [math.KT] ,Mathematics::Group Theory ,Mathematics - Quantum Algebra ,[MATH.MATH-SP] Mathematics [math]/Spectral Theory [math.SP] ,FOS: Mathematics ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-KT]Mathematics [math]/K-Theory and Homology [math.KT] ,Quantum Algebra (math.QA) ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,Representation Theory (math.RT) ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,Operator Algebras (math.OA) ,Mathematics - Representation Theory ,[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR] ,[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP] ,[MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] - Abstract
We study unitary representations of semidirect products of a compact quantum group with a finite group. We give a classification of all irreducible unitary representations, a description of the conjugate representation of irreducible unitary representations in terms of this classification, and the fusion rules for the semidirect product., Comment: version submitted for publication (compiled with pdflatex to fix overful lines with references)
- Published
- 2019
12. Barcodes as summary of loss function's topology
- Author
-
Barannikov, Serguei, Korotin, Alexander, Oganesyan, Dmitry, Emtsev, Daniil, Burnaev, Evgeny, Université Paris Diderot - Paris 7 (UPD7), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Skolkovo Institute of Science and Technology [Moscow] (Skoltech), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), and Barannikov, S.
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,Persistence diagram ,[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG] ,Computer Science::Computational Geometry ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,Quantitative Biology::Genomics ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,Persistence barcodes ,[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG] ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Morse complex ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Persistent homology ,Loss surface ,Computer Science::Cryptography and Security - Abstract
We apply the canonical forms (barcodes) of Morse complexes to explore topology of loss surfaces. We present a novel algorithm for calculations of the objective function's barcodes of minima. We have conducted experiments for calculating barcodes of local minima forbenchmark functions and for loss surfaces of neural networks. Our experiments confirm two principal observations: (1) the barcodes of minima are located in a small lower part of the range of values of loss function of neural networks and (2) increase of the neural network's depth brings down the minima's barcodes. This has natural implications for the neural network learning and the ability to generalize.
- Published
- 2019
13. Quantum affine algebras and cluster algebras
- Author
-
David Hernandez, Bernard Leclerc, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), and Hernandez, David
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Mathematics::Category Theory ,Mathematics - Quantum Algebra ,FOS: Mathematics ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Quantum Algebra (math.QA) ,Representation Theory (math.RT) ,Mathematics - Representation Theory - Abstract
This article is an extended version of the minicourse given by the second author at the summer school of the conference "Interactions of quantum affine algebras with cluster algebras, current algebras and categorification", held in June 2018 in Washington. The aim of the minicourse, consisting of three lectures, was to present a number of results and conjectures on certain monoidal categories of finite-dimensional representations of quantum affine algebras, obtained by exploiting the fact that their Grothendieck rings have the natural structure of a cluster algebra., v2: minor corrections. Will appear in the proceedings of the conference "Interactions of quantum affine algebras with cluster algebras, current algebras and categorification"
- Published
- 2019
14. La formule de Plancherel pour les groupes quantiques semi-simples complexes
- Author
-
Voigt, Christian, Yuncken, Robert, School of Mathematics and Statistics, University of Glasgow, Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), The first author was supported by the Polish National Science Centre grant no. 2012/06/M/ST1/00169., The second author was supported by the project SINGSTAR of the Agence Nationale de la Recherche, ANR-14-CE25-0012-01, and by the CNRS PICS project OpPsi., ANR-14-CE25-0012,SINGSTAR,Analyse sur les espaces singuliers et non compacts: une approche par les C*-algèbres(2014), and Yuncken, Robert
- Subjects
Plancherel formula ,General Mathematics ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,Quantum groups ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,Groupes quantiques ,[MATH.MATH-KT] Mathematics [math]/K-Theory and Homology [math.KT] ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,complexe de Bernstein-Gelfand-Gelfand ,BGG complex ,[MATH]Mathematics [math] ,Representation Theory (math.RT) ,Operator Algebras (math.OA) ,Mathematics::Representation Theory ,formule de Plancherel ,2010 Mathematics Subject Classification. 20G42, 46L51, 46L65 ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,20G42, 46L51, 46L65 ,Mathematics::Rings and Algebras ,Mathematics - Operator Algebras ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,[MATH.MATH-KT]Mathematics [math]/K-Theory and Homology [math.KT] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG] ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,Mathematics - Representation Theory - Abstract
We calculate the Plancherel formula for complex semisimple quantum groups, that is, Drinfeld doubles of $ q $-deformations of compact semisimple Lie groups. As a consequence we obtain a concrete description of their associated reduced group $ C^* $-algebras. The main ingredients in our proof are the Bernstein-Gelfand-Gelfand complex and the Hopf trace formula., Comment: 21 pages. Minor revision. Accepted for publication in Ann. Sci. Ec. Norm. Sup
- Published
- 2019
15. EA-Matrix integrals and cyclic cohomology
- Author
-
Barannikov, Serguei, Université Paris Diderot - Paris 7 (UPD7), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Barannikov, S.
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
The localization of the EA-matrix integrals from [B4], is calculated via determinants and tau functions of KP-type hierarchies in the case of associative algebras with even scalar product.
- Published
- 2019
16. Alternative versions of the Johnson homomorphisms and the LMO functor
- Author
-
Anderson Vera, Institut de Recherche Mathématique Avancée (IRMA), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), and Vera, Anderson
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Mathematics - Geometric Topology ,57M27, 57M05, 57S05 ,Mathematics::K-Theory and Homology ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] ,FOS: Mathematics ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Geometric Topology (math.GT) ,Geometry and Topology ,[MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT] ,Mathematics::Geometric Topology ,[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT] - Abstract
Let $\Sigma$ be a compact connected oriented surface with one boundary component and let $\mathcal{M}$ denote the mapping class group of $\Sigma$. By considering the action of $\mathcal{M}$ on the fundamental group of $\Sigma$ it is possible to define different filtrations of $\mathcal{M}$ together with some homomorphisms on each term of the filtration. The aim of this paper is twofold. Firstly we study a filtration of $\mathcal{M}$ introduced recently by Habiro and Massuyeau, whose definition involves a handlebody bounded by $\Sigma$. We shall call it the "alternative Johnson filtration", and the corresponding homomorphisms are referred to as "alternative Johnson homomorphisms". We provide a comparison between the alternative Johnson filtration and two previously known filtrations: the original Johnson filtration and the Johnson-Levine filtration. Secondly, we study the relationship between the alternative Johnson homomorphisms and the functorial extension of the Le-Murakami-Ohtsuki invariant of $3$-manifolds. We prove that these homomorphisms can be read in the tree reduction of the LMO functor. In particular, this provides a new reading grid for the tree reduction of the LMO functor., Comment: 62 pages, several figures. v_2 minor changes
- Published
- 2019
17. Cyclicity and R-matrices
- Author
-
David Hernandez and Hernandez, David
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Quantum affine algebra ,Pure mathematics ,Mathematics::Combinatorics ,Mathematics::Operator Algebras ,General Mathematics ,010102 general mathematics ,General Physics and Astronomy ,01 natural sciences ,Tensor product ,Mathematics::K-Theory and Homology ,Simple (abstract algebra) ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,Representation Theory (math.RT) ,0101 mathematics ,Mathematics - Representation Theory ,Mathematics - Abstract
Let $S_1, \cdots, S_N$ simple finite-dimensional modules of a quantum affine algebra. We prove that if $S_i\otimes S_j$ is cyclic for any $i < j$ (i.e. generated by the tensor product of the highest weight vectors), then $S_1\otimes \cdots \otimes S_N$ is cyclic. The proof is based on the study of $R$-matrices., 20 pages. This article may be seen as a generalization of arXiv:0907.3002 on which it is partially based. V2 : slight modifications, references updated. To appear in Selecta Mathematica
- Published
- 2019
18. Higher order Hamiltonians for the trigonometric Gaudin model
- Author
-
Alexander Molev, Eric Ragoucy, Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTH), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), and Malaval, Virginie
- Subjects
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Complex system ,FOS: Physical sciences ,01 natural sciences ,0103 physical sciences ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Limit (mathematics) ,0101 mathematics ,Quantum ,Mathematical Physics ,Mathematical physics ,Physics ,Bethe subalgebra ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Gaudin model ,010308 nuclear & particles physics ,010102 general mathematics ,Subalgebra ,Order (ring theory) ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,Quantum affine algebra ,Nonlinear Sciences::Exactly Solvable and Integrable Systems ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Trigonometry - Abstract
We consider the trigonometric classical $r$-matrix for $\mathfrak{gl}_N$ and the associated quantum Gaudin model. We produce higher Hamiltonians in an explicit form by applying the limit $q\to 1$ to elements of the Bethe subalgebra for the $XXZ$ model., 14 pages
- Published
- 2019
19. Invariants of Morse complexes, persistent homology and applications
- Author
-
Barannikov, Serguei, Barannikov, S., Université Paris Diderot - Paris 7 (UPD7), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), NRU HSE , Moscow, Sobolev Institute of Mathematics, and Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
Persistence diagrams ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,Persistence barcodes ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Morse Theory ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,Morse complex ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Chain complexes ,Persistent homology computation ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
International audience; The algorithm for calculation of "canonical form" = "persistence barcodes/diagrams" invariants from S.Barannikov "The Framed Morse complex and its invariants" Adv. in Sov. Math., vol 21, AMS transl, (1994), is described.
- Published
- 2019
20. Rewriting modulo isotopies in Khovanov-Lauda-Rouquier's categorification of quantum groups
- Author
-
Benjamin Dupont, Algèbre, géométrie, logique (AGL), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and Dupont, Benjamin
- Subjects
Pure mathematics ,General Mathematics ,Categorification ,Modulo ,Structure (category theory) ,KLR algebras ,Quantum groups ,01 natural sciences ,Rewriting modulo ,Mathematics::Category Theory ,Mathematics::Quantum Algebra ,0103 physical sciences ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Category Theory (math.CT) ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,0101 mathematics ,Algebraic number ,Representation Theory (math.RT) ,Mathematics::Representation Theory ,Mathematics ,[MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Quantum group ,Linear polygraphs ,010102 general mathematics ,Higher-dimensional linear categories ,Mathematics - Category Theory ,[MATH.MATH-CT] Mathematics [math]/Category Theory [math.CT] ,Isotopy ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,010307 mathematical physics ,Rewriting ,Mathematics - Representation Theory ,Vector space - Abstract
We study a presentation of Khovanov - Lauda - Rouquier's candidate $2$-categorification of a quantum group using algebraic rewriting methods. We use a computational approach based on rewriting modulo the isotopy axioms of its pivotal structure to compute a family of linear bases for all the vector spaces of $2$-cells in this $2$-category. We show that these bases correspond to Khovanov and Lauda's conjectured generating sets, proving the non-degeneracy of their diagrammatic calculus. This implies that this $2$-category is a categorification of Lusztig's idempotent and integral quantum group $\bf{U}_{q}(\mathfrak{g})$ associated to a symmetrizable simply-laced Kac-Moody algebra $\mathfrak{g}$.
- Published
- 2019
- Full Text
- View/download PDF
21. Decidability of the Riemann Hypothesis
- Author
-
Moxley, Frederick and Moxley, Frederick
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph] ,[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] ,[PHYS] Physics [physics] - Abstract
The Hamiltonian of a quantum mechanical system has an affiliated spectrum, and in order for this spectrum to be locally observable, the Hamiltonian should be Hermitian. Non-Hermitian Hamiltonians can be observed non-locally via parity, i.e. by taking the expectation value of the Wigner distribution evaluated at the orgin in phase space. Studies such as these quantum nonlocality analogies have led to the Bender-Brody-M\"uller (BBM) conjecture, which involves a non-Hermitian Hamiltonian eigenequation whose eigenvalues are the nontrivial zeros of the Riemann zeta function. Herein it is shown from symmetrization of the BBM Hamiltonian that the eigenvalues are not locally observable, i.e. \textit{the analytic continuation of the Riemann zeta function is not an analytically computable function at $\sigma=1/2$}. In the present case, the Riemann zeta function is analogous to chaotic quantum systems, as the harmonic oscillator is for integrable quantum systems. As such, herein we perform a symmetrization procedure of the BBM Hamiltonian to obtain a Hermitian Hamiltonian using a similarity transformation, and provide a trivial analytical expression for the eigenvalues of the results using Green's functions. A nontrivial expression for the eigensolution of the eigenequation is also obtained. A Gelfand triplet is then used to ensure that the eigensolution is well defined. The holomorphicity of the resulting eigenvalue spectrum is demonstrated, and it is shown that that the expectation value of the Hamiltonian operator is periodically zero such that the nontrivial zeros of the Riemann zeta function are not observable, i.e., the Riemann Hypothesis is not decidable. Moreover, a second quantization of the resulting Schr\"odinger equation is performed, and a convergent solution for the nontrivial zeros of the analytic continuation of the Riemann zeta function is obtained. Finally, from the holomorphicity of the eigensolution it is shown that the real part of every nontrivial zero of the Riemann zeta function exists at $\sigma=1/2$, and a general solution is obtained by performing an invariant similarity transformation.
- Published
- 2019
22. Stable maps, Q-operators and category O
- Author
-
Hernandez, David, Hernandez, David, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,FOS: Mathematics ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Quantum Algebra (math.QA) ,Representation Theory (math.RT) ,Mathematics::Representation Theory ,Mathematics - Representation Theory - Abstract
Motivated by Maulik-Okounkov stable maps associated to quiver varieties, we define and construct algebraic stable maps on tensor products of representations in the category O of the Borel subalgebra of an arbitrary untwisted quantum affine algebra. Our representation-theoretical construction is based on the study of the action of Cartan-Drinfeld subalgebras. We prove the algebraic stable maps are invertible and depend rationally on the spectral parameter. As an application, we obtain new R-matrices in the category O and we establish that a large family of simple modules, including the prefundamental representations associated to Q-operators, generically commute as representations of the Cartan-Drinfeld subalgebra. We also establish categorified QQ*-systems in terms of the R-matrices we construct., Comment: 33 pages; v3 : final version accepted in Representation Theory
- Published
- 2019
23. Uncertainty quantification and infinite-dimensional objects
- Author
-
Bassi, Mohamed, STAR, ABES, Laboratoire de Mécanique de Normandie (LMN), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU), Normandie Université, and Eduardo de Cursi Souza
- Subjects
Statistique des objets ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,Generalized Fourier series ,Optimisation multiobjective ,Séries de Fourier généralisées ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Statistics of things ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Infinite-dimensional objects ,[MATH.MATH-ST] Mathematics [math]/Statistics [math.ST] ,Uncertainty quantification ,Quantification des incertitudes ,Multiobjective optimization ,Objets en dimension infinie - Abstract
The Polynomial Chaos theory, being a less expensive and more efficient alternative of the Monte Carlo Simulation, remains limited to the polynomials of Gaussian variables. We present a Hilbertian method that generalizes this theory and we establish the conditions of existence and convergence of an expansion in Generalized Fourier Series. Then, we present the Statistics of Things that allows studying the statistical characteristics of a set of random infinite-dimensional objects. By computing the distances between the hypervolumes, namely the distance of Hausdorff, this method allows determining the median object, the quantile objects and a confidence interval at a given level for a finite set of random objects. In the third section, we address a method for simulating a large size sample of a random object at a much reduced computational cost, and calculating its mean without using the distance between the hypervolumes., La théorie des polynômes de chaos, étant une alternative moins onéreuse et plus efficace de la simulation de Monte Carlo, reste limitée aux polynômes de variables gaussiennes. On présente une méthode de type hilbertien qui généralise cette théorie et on établit les conditions d’existence et de convergence d’une expansion en Série de Fourier Généralisée. Ensuite, on présente la Statistique des Objets qui permet d’étudier les caractéristiques statistiques d’un ensemble d’objets aléatoires en dimension infinie. En calculant les distances entre les hypervolumes, notamment la distance de Hausdorff, cette méthode permet de déterminer l’objet médian, les objets quantiles et un intervalle de confiance à un seuil donné pour un ensemble fini d’objets aléatoires. Une méthode pour simuler un échantillon de grande taille d’un objet aléatoire à coût computationnel très réduit, et calculer sa moyenne sans faire appel à la distance entre les hypervolumes, fait l’objet de la troisième partie.
- Published
- 2019
24. When Geometry Meets Psycho-Physics and Quantum Mechanics: Modern Perspectives on the Space of Perceived Colors
- Author
-
Edoardo Provenzi, Michel Berthier, PROVENZI, Edoardo, Mathématiques, Image et Applications - EA 3165 (MIA), Université de La Rochelle (ULR), Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Jordan algebras ,05 social sciences ,Color space ,Space (mathematics) ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,050105 experimental psychology ,Resnikoff's model ,03 medical and health sciences ,0302 clinical medicine ,Development (topology) ,Differential geometry ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Calculus ,0501 psychology and cognitive sciences ,[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG] ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,030217 neurology & neurosurgery ,[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR] ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; We discuss some modern perspectives about the mathematical formalization of colorimetry, motivated by the analysis of a groundbreaking, yet poorly known, model of the color space proposed by H.L. Resnikoff and based on differential geometry. In particular, we will underline two facts: the first is the need of novel, carefully implemented, psycho-physical experiments and the second is the role that Jordan algebras may have in the development of a more rigorously founded colorimetry.
- Published
- 2019
25. Lie, associative and commutative quasi-isomorphism
- Author
-
Campos, Ricardo, Petersen, Dan, Robert-Nicoud, Daniel, Wierstra, Felix, and Campos, Ricardo
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,K-Theory and Homology (math.KT) ,[MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT] ,Mathematics - Rings and Algebras ,[MATH.MATH-KT] Mathematics [math]/K-Theory and Homology [math.KT] ,Rings and Algebras (math.RA) ,Mathematics - K-Theory and Homology ,Mathematics - Quantum Algebra ,[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA] ,FOS: Mathematics ,Algebraic Topology (math.AT) ,Quantum Algebra (math.QA) ,Mathematics - Algebraic Topology ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,Representation Theory (math.RT) ,Mathematics - Representation Theory - Abstract
Over a field of characteristic zero, we show that two commutative differential graded (dg) algebras are quasi-isomorphic if and only if they are quasi-isomorphic as associative dg algebras. This answers a folklore problem in rational homotopy theory, showing that the rational homotopy type of a space is determined by its associative dg algebra of rational cochains. We also show a Koszul dual statement, under an additional completeness hypothesis: two homotopy complete dg Lie algebras whose universal enveloping algebras are quasi-isomorphic as associative dg algebras must themselves be quasi-isomorphic. The latter result applies in particular to nilpotent Lie algebras (not differential graded), in which case it says that two nilpotent Lie algebras whose universal enveloping algebras are isomorphic as associative algebras must be isomorphic., Comment: v3: major revision, changed statement of Theorem B, restructured paper. v4: Final version to appear in Acta. 27 pages
- Published
- 2019
- Full Text
- View/download PDF
26. Théorie topologique des champs quantiques pour la superalgèbre de Lie $\mathfrak{sl}(2|1)$
- Author
-
Ha, Ngoc Phu, Laboratoire de Mathématiques de Bretagne Atlantique (LMBA), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Université de Bretagne Sud - Vannes (UBS Vannes), Université de Bretagne Sud (UBS), Université de Bretagne Sud, Bertrand PATUREAU-MIRAND, Université de Brest (UBO)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS), and Ha, Ngoc Phu
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,unrolled quantum group ,modified trace ,trace modifiée ,super-symmetries ,[MATH] Mathematics [math] ,TQFT ,algèbre topologique localement convexe ,super-symétries ,invariant of 3-manifolds ,invariant de $3$-variétés ,group quantique déroulé ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,locally convex topological algebra ,[MATH]Mathematics [math] ,[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT] - Abstract
This text studies the quantum group $\mathcal{U}_{\xi}^{H}\mathfrak{sl}(2|1)$ associated with the Lie superalgebra $\mathfrak{sl}(2|1)$ and a category of finite dimensional representations. The aim is to construct the topological invariants of $3$-manifolds using the notion of {\em modified trace}. We first prove that the category $\mathscr{C}^H$ of the nilpotent weight modules over $\mathcal{U}_{\xi}^{H}\mathfrak{sl}(2|1)$ is ribbon and that there exists a modified trace on its ideal of projective modules. Furthermore, $\mathscr{C}^H$ possesses a relative $G$-premodular structure which is a sufficient condition to construct an invariant of $3$-manifolds of Costantino-Geer-Patureau type. This invariant is the heart of a $1 + 1 + 1$-TQFT (Topological Quantum Field Theory). Next Hennings proposed from a finite dimensional Hopf algebra, a construction of invariants which does not require to consider the category of its representations. We show that the unrolled quantum group $\mathcal{U}_{\xi}^{H}\mathfrak{sl}(2|1)/(e_1^{\ell}, f_1^{\ell})$ has a completion which is a topological ribbon Hopf algebra. We construct an invariant of $3$-manifolds of Hennings type using this algebraic structure, a discrete Fourier transform, and the notion of $G$-integrals. The integral in a Hopf algebra is central in the construction of Hennings. The notion of modified trace in a category has recently been revealed to be a generalization of the integrals in a finite dimensional Hopf algebra. In a more general context of infinite dimensional Hopf algebras we prove the relation formulated between the modified trace and the $G$-integral., Ce texte étudie le groupe quantique $\mathcal{U}_{\xi}^{H}\mathfrak{sl}(2|1)$ associé à la superalgèbre de Lie $\mathfrak{sl}(2|1)$ et une catégorie de ses représentations de dimension finie. L'objectif est de construire des invariants topologiques de $3$-variétés en utilisant la notion de {\em trace modifiée}. D'abord nous prouvons que la catégorie $\mathscr{C}^H$ des modules de poids nilpotents sur $\mathcal{U}_{\xi}^{H}\mathfrak{sl}(2|1)$ est enrubannée et qu'il existe une trace modifiée sur son idéal des modules projectifs. De plus $\mathscr{C}^H$ possède une structure relativement $G$-prémodulaire ce qui est une condition suffisante pour construire un invariant de $3$-variétés à la Costantino-Geer-Patureau. Cet invariant est le coeur d'une $1+1+1$-TQFT (Topological Quantum Field Theory). D'autre part Hennings a proposé à partir d'une algèbre de Hopf de dimension finie une construction d'invariants qui dispense de considérer la catégorie de ses représentations. Nous montrons que le groupe quantique déroulé $\mathcal{U}_{\xi}^{H}\mathfrak{sl}(2|1)/(e_1^{\ell}, f_1^{\ell})$ possède une complétion qui est une algèbre de Hopf enrubannée topologique. Nous construisons un invariant de $3$-variétés à la Hennings en utilisant cette structure algébrique, une transformation de Fourier discrète et la notion de $G$-intégrales. L'intégrale dans une algèbre de Hopf est centrale dans la construction de Hennings. La notion de trace modifiée dans une catégorie s'est récemment révélée être une généralisation des intégrales dans les algèbres de Hopf de dimension finie. Dans un contexte plus général d'algèbre de Hopf de dimension infinie nous prouvons la relation formulée entre la trace modifiée et la $G$-intégrale.
- Published
- 2018
27. Quantization of the affine group of a local field
- Author
-
Victor Gayral, David Jondreville, Laboratoire de Mathématiques de Reims (LMR), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), and Gayral, Victor
- Subjects
Pure mathematics ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,FOS: Physical sciences ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,01 natural sciences ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,Affine representation ,Affine hull ,0103 physical sciences ,Affine group ,FOS: Mathematics ,0101 mathematics ,Operator Algebras (math.OA) ,Mathematical Physics ,[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR] ,Mathematics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Applied Mathematics ,010102 general mathematics ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,Mathematics - Operator Algebras ,Mathematical Physics (math-ph) ,Affine plane ,Functional Analysis (math.FA) ,Mathematics - Functional Analysis ,Affine shape adaptation ,Affine coordinate system ,Affine space ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,010307 mathematical physics ,Geometry and Topology ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,Quotient group - Abstract
For a non Archimedean local field which is not of characteristic $2$, nor an extension of $\mathbb Q_2$, we construct a pseudo-differential calculus covariant under a unimodular subgroup of the affine group of the field. Our phase space is a quotient group of the covariance group. Our main result is a generalisation on that context of the Calder\'on-Vaillancourt estimate. Our construction can be thought as the non Archimedean version of Unterberger's Fuchs calculus and our methods are mainly based on Wigner functions and on coherent states transform., Comment: to appear in JFG
- Published
- 2018
28. Contributions to the theory of KZB associators
- Author
-
Gonzalez, Martin, Sorbonne Université (SU), Sorbonne Université, Damien Calaque, Pierre Lochak, Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and STAR, ABES
- Subjects
Grothendieck-Teichmüller groups ,Connexions KZB universelles ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Drinfeld associators ,elliptic multiple zeta values at torsion points ,groupes de Grothendieck-Teichm\"uller ,[MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT] ,R-matrices classiques dynamiques ,Groupes de Grothendieck-Teichmüller ,Grothendieck-Teichm\"uller groups ,associateurs de Drinfeld ,Dynamic classic R-matrices ,Opérades ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] ,Universal KZB connections ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Operads ,Valeurs multizêta elliptiques ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,valeurs multizêta elliptiques en des points de torsion ,[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT] - Abstract
In this thesis, following the work initiated by V. Drinfeld and pursued by B. Enriquez, then by the latter together with D. Calaque and P. Etingof, we study the universal twisted elliptic (ellipsitomic in short) KZB connection, associated to the moduli space of elliptic curves with n marked points and a (M,N)-level structure. The flatness of this connection allows us to study monodromy relations satisfied by this connection, opening the way to a general theory of ellipsitomic associators and Grothendieck-Teichmüller groups corresponding to them, which is released via the use of the formalism of operads (and some of their variants) basing ourselves on the work of B. Fresse. On the one hand, this formalism allows us to study the structure of associators in higher genus. On the other hand, the ellipsitomic KZB associator allows us to derive a theory of elliptic multiple zeta values at torsion points, from which some of their first associator-like properties are distinguished. We will begin by setting up the operadic machinery necessary to define the ellipsitomic associators starting successively with the genus 0 situation, which is well-known, then the genus 1 situation and their cyclotomic variants. Then, in light of this formalism, we will release a definition of genus gassociators. Next, we will go into the details of the construction of the universal ellipsitomic KZB connection, first over the (M,N)-twisted configuration space of an elliptic curve and then over the moduli space of elliptic curves with a level structure. We will associate this connection to its realized version by means of the use of double affine Hecke algebras and of classical dynamical r-matrices. Finally we will present the applications of this construction, namely : the formality of certain subgroups of the braid group on the torus, the ellipsitomic KZB associator, elliptic multiple zeta values at points of torsion as well as an application in representations of cyclotomic Cherednik algebras., Dans cette thèse, en suivant les travaux initiés par V. Drinfeld, poursuivis par B. Enriquez, puis par ce dernier, D. Calaque et P. Etingof, nous étudions la connexion KZB elliptique cyclotomique (ellipsitomique en plus court) universelle, associée à l’espace de modules des courbes elliptiques avec n points marqués et une structure de (M,N)-niveau. La platitude de cette connexion nous permet d’étudier des relations de monodromie, ouvrant la voie à une théorie générale des associateurs ellipsitomiques et des groupes de Grothendieck-Teichmüller qui lui correspondent, que l’on dégage via l’utilisation du formalisme des opérades (et certaines de leurs variantes) en nous basant sur les travaux de B. Fresse à ce sujet. D’une part, ce formalisme nous permet par ailleurs d’étudier la structure des associateurs en genre supérieur. D’autre part, l’associateur KZB ellipsitomique nous permet de dégager une théorie des valeurs multizêta elliptiques en des points de torsion, dont on démarque quelques unes de leurs premières propriétés du type associateurs. On commencera par mettre en place la machinerie opéradique nécessaire pour définir les associateurs ellipsitomiques en partant tour à tour de la situation déjà connue en genre 0, puis de celle en genre 1 et ensuite de leurs variantes cyclotomiques. Enfin, grâce à ce formalisme, nous dégagerons une définition des associateurs en tout genre. Ensuite, nous entrerons dans le détail de la construction de la connexion KZB ellipsitomique universelle, en premier temps sur l’espace de configurations (M,N)-décorées d’une courbe elliptique puis sur les espaces de modules des courbes à niveau, nous la lieront à sa version réalisée via l’utilisation des algèbres de Hecke doublement affines et des r-matrices classiques dynamiques. Pour finir nous présenterons les applications de cette construction, à savoir : formalité de certains sous-groupes de tresses sur le tore, l’associateur KZB ellipsitomique, valeurs multizêta elliptiques en des points de torsion ainsi qu’une application en représentations d’algèbres de Cherednik cyclotomiques.
- Published
- 2018
29. On pseudodifferential operators on filtered and multifiltered manifolds
- Author
-
Yuncken, Robert, Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Université Clermont Auvergne, Georges Skandalis, ANR-14-CE25-0012,SINGSTAR,Analyse sur les espaces singuliers et non compacts: une approche par les C*-algèbres(2014), Yuncken, Robert, and Appel à projets générique - Analyse sur les espaces singuliers et non compacts: une approche par les C*-algèbres - - SINGSTAR2014 - ANR-14-CE25-0012 - Appel à projets générique - VALID
- Subjects
Index theory ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,Quantum groups ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,Groupes quantiques ,[MATH.MATH-KT] Mathematics [math]/K-Theory and Homology [math.KT] ,Groupoïdes de Lie ,Mathematics::K-Theory and Homology ,Lie groupoids ,FOS: Mathematics ,Analysis on graded Lie groups ,Pseudodifferential operators ,Operator Algebras (math.OA) ,Mathematics::Representation Theory ,Mathematics::Symplectic Geometry ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Opérateurs pseudo-différentiels ,Mathematics::Operator Algebras ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,Mathematics - Operator Algebras ,Noncommutative geometry ,Primary: 58J40, Secondary: 35S05, 47G30, 58H05, 22A22, 20G42, 46L80, 19K35 ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,[MATH.MATH-KT]Mathematics [math]/K-Theory and Homology [math.KT] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG] ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,Géométrie non commutative - Abstract
This memoir is a summary of recent work, including collaborations with Erik van Erp, Christian Voigt and Marco Matassa, compiled for the "Habilitation \`a diriger des recherches". We present various different approaches to constructing algebras of pseudodifferential operators adapted to filtered and multifiltered manifolds and some quantum analogues. A general goal is the study of index problems in situations where standard elliptic theory is insufficient. We also present some applications of these constructions. We begin by presenting a characterization of pseudodifferential operators on filtered manifolds in terms of distributions on the tangent groupoid which are essentially homogeneous with respect to the natural $\mathbb{R}^\times_+$-action. Next, we describe a rudimentary multifiltered pseudodifferential theory on the full flag manifold $\mathcal{X}$ of a complex semisimple Lie group $G$ which allows us to simultaneously treat longitudinal pseudodifferential operators along every one of the canonical fibrations of $\mathcal{X}$ over smaller flag manifolds. The motivating application is the construction of a $G$-equivariant $K$-homology class from the Bernstein-Gelfand-Gelfand complex of a semisimple group. Finally, we discuss pseudodifferential operators on two classes of quantum flag manifolds: quantum projective spaces and the full flag manifolds of $SU_q(n)$. In particular, on the full flag variety of $SU_q(3)$ we obtain an equivariant fundamental class from the Bernstein-Gelfand-Gelfand complex., Comment: Memoir for the "Habilitation \`a diriger des recherches"
- Published
- 2018
30. Summations over generalized ribbon Feynman diagrams and all genus Gromov-Witten invariants
- Author
-
Barannikov, Serguei, Université Paris Diderot - Paris 7 (UPD7), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Pierre et Marie Curie - Paris 6 (UPMC), Barannikov, S., and Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,Mathematics::Algebraic Geometry ,Gromov-Witten invariants ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,mirror symmetry ,Moduli space of curves ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Cohomological field theories ,Mathematics::Symplectic Geometry ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
The construction of cohomology classes of compactified moduli spaces of curves from asymptotic expansions of EA matrix integrals, described in the works of speaker, is presented. The construction defines a cohomological field theory, which conjecturally coincides with the all genus Gromov-Witten invariants of the mirror manifold. The construction is based on the speaker’s theorem identifying the cell complex of the compactified moduli space of curves with the Feynman transform of the operad of permutation group algebras. As a simple application a new formula for generating function for products of psi classes in the total cohomology of the compactified moduli spaces of curves is described. Relevant papers: arxiv:1803.11549 / HAL-00429963 (2009), arxiv:0912.5484 / hal-00102085(2006)
- Published
- 2018
31. Summations over generalized ribbon graphs and all genus categorical Gromov-Witten invariants
- Author
-
Barannikov, Serguei, Université Paris Diderot - Paris 7 (UPD7), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Barannikov, S.
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,ComputingMilieux_MISCELLANEOUS ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
International audience
- Published
- 2018
32. An Asynchronous Soundness Theorem for Concurrent Separation Logic
- Author
-
Paul-André Melliès, Léo Stefanesco, Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon), Melliès, Paul-André, and École normale supérieure de Lyon (ENS de Lyon)
- Subjects
Computer Science - Logic in Computer Science ,[INFO.INFO-LO] Computer Science [cs]/Logic in Computer Science [cs.LO] ,Game semantics ,Semantics (computer science) ,Computer science ,[MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT] ,0102 computer and information sciences ,02 engineering and technology ,Separation logic ,01 natural sciences ,[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] ,Tree (descriptive set theory) ,[INFO.INFO-FL]Computer Science [cs]/Formal Languages and Automata Theory [cs.FL] ,0202 electrical engineering, electronic engineering, information engineering ,Canonical map ,[INFO.INFO-FL] Computer Science [cs]/Formal Languages and Automata Theory [cs.FL] ,[INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS] ,[MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] ,Soundness ,Discrete mathematics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Computer Science - Programming Languages ,[INFO.INFO-PL]Computer Science [cs]/Programming Languages [cs.PL] ,[INFO.INFO-GT]Computer Science [cs]/Computer Science and Game Theory [cs.GT] ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] ,020207 software engineering ,16. Peace & justice ,[MATH.MATH-CT] Mathematics [math]/Category Theory [math.CT] ,[INFO.INFO-PL] Computer Science [cs]/Programming Languages [cs.PL] ,[MATH.MATH-LO]Mathematics [math]/Logic [math.LO] ,[INFO.INFO-MS] Computer Science [cs]/Mathematical Software [cs.MS] ,Shared memory ,[INFO.INFO-CL] Computer Science [cs]/Computation and Language [cs.CL] ,010201 computation theory & mathematics ,Asynchronous communication ,[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] ,[INFO.INFO-GT] Computer Science [cs]/Computer Science and Game Theory [cs.GT] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,F.3.2 ,[MATH.MATH-LO] Mathematics [math]/Logic [math.LO] ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,F.3.1 - Abstract
Concurrent separation logic (CSL) is a specification logic for concurrent imperative programs with shared memory and locks. In this paper, we develop a concurrent and interactive account of the logic inspired by asynchronous game semantics. To every program $C$, we associate a pair of asynchronous transition systems $[C]_S$ and $[C]_L$ which describe the operational behavior of the Code when confronted to its Environment or Frame --- both at the level of machine states ($S$) and of machine instructions and locks ($L$). We then establish that every derivation tree $\pi$ of a judgment $\Gamma\vdash\{P\}C\{Q\}$ defines a winning and asynchronous strategy $[\pi]_{Sep}$ with respect to both asynchronous semantics $[C]_S$ and $[C]_L$. From this, we deduce an asynchronous soundness theorem for CSL, which states that the canonical map $\mathcal{L}:[C]_S\to[C]_L$ from the stateful semantics $[C]_S$ to the stateless semantics $[C]_L$ satisfies a basic fibrational property. We advocate that this provides a clean and conceptual explanation for the usual soundness theorem of CSL, including the absence of data races., Comment: Full version of an extended abstract published at LICS 2018
- Published
- 2018
33. (Co)Feynman transform and cohomological field theories-1
- Author
-
Barannikov, Serguei, Université Paris Diderot - Paris 7 ( UPD7 ), Institut de Mathématiques de Jussieu - Paris Rive Gauche ( IMJ-PRG ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Barannikov, S., Université Paris Diderot - Paris 7 (UPD7), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,[ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,[ MATH.MATH-SG ] Mathematics [math]/Symplectic Geometry [math.SG] ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] ,[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG] - Published
- 2018
34. Modified trace from pivotal Hopf $G$-coalgebra
- Author
-
Ha, Ngoc-Phu, Laboratoire de Mathématiques de Bretagne Atlantique (LMBA), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Université de Bretagne Sud (UBS), Université de Brest (UBO)-Université de Bretagne Sud (UBS)-Centre National de la Recherche Scientifique (CNRS), and Ha, Ngoc Phu
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Mathematics::Quantum Algebra ,Mathematics::Category Theory ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,Mathematics - Quantum Algebra ,Mathematics::Rings and Algebras ,FOS: Mathematics ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Quantum Algebra (math.QA) ,[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT] - Abstract
In a recent paper the authors Beliakova, Blanchet and Gainutdinov have shown that the modified trace on the category $H$-pmod of the projective modules corresponds to the symmetrised integral on the finite dimensional pivotal Hopf algebra $H$. We generalize this fact to the context of $G$-graded categories and Hopf $G$-coalgebra studied by Turaev-Virelizier. We show that the symmetrised $G$-integral on a finite type pivotal Hopf $G$-coalgebra induces a modified trace in the associated $G$-graded category.
- Published
- 2018
35. Quantum Grothendieck ring isomorphisms, cluster algebras and Kazhdan-Lusztig algorithm
- Author
-
Hironori Oya, David Hernandez, and Hernandez, David
- Subjects
Pure mathematics ,Quantum affine algebra ,General Mathematics ,01 natural sciences ,Cluster algebra ,Mathematics::Category Theory ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA] ,Quantum Algebra (math.QA) ,0101 mathematics ,Representation Theory (math.RT) ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,Mathematics::Representation Theory ,Simple module ,Quantum ,Mathematics ,Ring (mathematics) ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Conjecture ,010102 general mathematics ,Mathematics - Rings and Algebras ,Rings and Algebras (math.RA) ,010307 mathematical physics ,Mathematics - Representation Theory - Abstract
We establish ring isomorphisms between quantum Grothendieck rings of certain remarkable monoidal categories of finite-dimensional representations of quantum affine algebras of types $A_{2n-1}^{(1)}$ and $B_n^{(1)}$. Our proof relies in part on the corresponding quantum cluster algebra structures. Moreover, we prove that our isomorphisms specialize at $t = 1$ to the isomorphisms of (classical) Grothendieck rings obtained recently by Kashiwara, Kim and Oh by other methods. As a consequence, we prove a conjecture formulated by the first author in 2002 : the multiplicities of simple modules in standard modules in the categories above for type $B_n^{(1)}$ are given by the specialization of certain analogues of Kazhdan-Lusztig polynomials and the coefficients of these polynomials are positive., Comment: v1 : 63 pages. v2 : 64 pages. Minor modification. To appear in Adv. Math
- Published
- 2018
36. Moduli spaces of (bi)algebra structures in topology and geometry
- Author
-
Sinan Yalin, Yalin, Sinan, Laboratoire Angevin de Recherche en Mathématiques (LAREMA), and Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Deformation theory ,Geometry ,[MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT] ,Topology ,01 natural sciences ,0103 physical sciences ,FOS: Mathematics ,Algebraic Topology (math.AT) ,Mathematics - Algebraic Topology ,0101 mathematics ,Geometry and topology ,Mathematics ,[MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Homotopy ,010102 general mathematics ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-CT] Mathematics [math]/Category Theory [math.CT] ,Moduli space ,Algebra ,Moduli of algebraic curves ,Derived algebraic geometry ,[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,010307 mathematical physics ,Geometric invariant theory ,Obstruction theory ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] - Abstract
After introducing some motivations for this survey, we describe a formalism to parametrize a wide class of algebraic structures occurring naturally in various problems of topology, geometry and mathematical physics. This allows us to define an "up to homotopy version" of algebraic structures which is coherent (in the sense of $\infty$-category theory) at a high level of generality. To understand the classification and deformation theory of these structures on a given object, a relevant idea inspired by geometry is to gather them in a moduli space with nice homotopical and geometric properties. Derived geometry provides the appropriate framework to describe moduli spaces classifying objects up to weak equivalences and encoding in a geometrically meaningful way their deformation and obstruction theory. As an instance of the power of such methods, I will describe several results of a joint work with Gregory Ginot related to longstanding conjectures in deformation theory of bialgebras, $E_n$-algebras and quantum group theory., References added, some corrections in Sections 3 and 4. This survey will eventually appear in the MATRIX book series http://www.matrix-inst.org.au/book-series/ . 43 pages, comments welcome
- Published
- 2018
37. NONDEGENERATE CRITICAL POINTS, MORSE-DARBOUX LEMMA AND PROPAGATORS IN BV FORMALISM
- Author
-
Barannikov, Serguei, Barannikov, S., Université Paris Diderot - Paris 7 (UPD7), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-SG] Mathematics [math]/Symplectic Geometry [math.SG] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG] - Abstract
The notion of nondegenerate critical point in the BV formalism is studied. The analogs of the Morse and Darboux theorems in the BV formalism are proven. The theorem on the normal form of an arbitrary quadratic function on odd symplectic space is proven. This can be viewed as an analog of Jordan type decomposition for a pair of a symmetric pairing on vector space and an anti-symmetric pairing on the dual space. The last result was used for the construction of propagators in the BV formalism in the equivariant setting, see [2, 3, 4]
- Published
- 2018
38. THE RIEMANN HYPOTHESIS AND THE EULER'S QUADRATIC EQUATION
- Author
-
Enoch, Opeyemi, Oluwole, Enoch, and Enoch, Opeyemi
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS] ,[MATH] Mathematics [math] ,and phrases: Riemann zeta function ,[INFO] Computer Science [cs] ,[PHYS] Physics [physics] ,[STAT] Statistics [stat] ,[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM] ,non-trivial zeros ,[INFO.INFO-NA] Computer Science [cs]/Numerical Analysis [cs.NA] ,and zeros of the analytic continuation formula ,[MATH.MATH-CV] Mathematics [math]/Complex Variables [math.CV] ,meromorphic function ,Euler's equation ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph] ,[INFO.INFO-CR] Computer Science [cs]/Cryptography and Security [cs.CR] ,[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] - Abstract
We present a general formula for obtaining the zeros of the analytic continuation formula of the Riemann zeta function from Euler's quadratic equation and show that these zeros are all real. Furthermore, substituting this formula into the analytic continuation formula, the root of the Analytic Continuation Formula (ACF) of the Riemann zeta function is determined.
- Published
- 2018
39. Groupoïdes quantiques de transformations : une approche algébrique et analytique
- Author
-
Frank Taipe and Taipe, Frank
- Subjects
Algèbres de Hopf ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Multiplier Hopf algebroid ,Groupoïdes ,Algébre de Yetter-Drinfeld ,Groupoïdes quantiques ,Groupoïde de transformations ,Yetter-Drinfeld algebra ,Groupes quantiques ,Braided commutative ,Hopf C*-bimodule ,Algébroïde de Hopf de multiplicateurs ,Tressée commutative ,Quantum group ,Quantum groupoid ,Transformation groupoid ,C*-bimodule de Hopf ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] - Abstract
This thesis is concerned with the construction of a family of quantum transformation groupoids in the algebraic framework in the form of measured multiplier Hopf *-algebroids in the sense of Timmermann and Van Daele and also in the context of operator algebras in the form of Hopf C*-bimodules on a C*-base in the sense of Timmermann. In the purely algebraic context, we first give a definition of a braided commutative Yetter-Drinfeld *-algebra over an algebraic quantum group in the sense of Van Daele and a Yetter-Drinfeld integral on it. Then, using these objects we construct a measured multiplier Hopf *-algebroid, we call to this new object an algebraic quantum transformation groupoid. In order to pass to the operator algebra framework, we give some conditions on the Yetter-Drinfeld integral inspired by the properties of KMS-weights on C*-algebras which will allow us to use the Gelfand–Naimark–Segal construction to extend all the purely algebraic objects to the C*-algebraic level. At this level, we construct in a similar way to that used in the work of Enock and Timmermann, a new mathematical object that we call a C*-algebraic quantum transformation groupoid, which is defined using the language of Hopf C*-bimodules on C*-bases., Cette thèse porte sur la construction d'une famille de groupoïdes quantiques de transformations qui dans le cadre algébrique sont des algébroïdes de Hopf de multiplicateurs mesurés au sens de Timmermann et Van Daele et qui dans le cadre des algèbres d'opérateurs sont des C*-bimodules de Hopf sur une C*-base au sens de Timmermann. Dans le contexte purement algébrique, nous définissons d'abord une algèbre involutive de Yetter-Drinfeld tressée commutative sur un groupe quantique algébrique au sens de Van Daele et une intégrale de Yetter-Drinfeld sur elle. En utilisant ces objets nous construisons après un algébroide de Hopf de multiplicateurs involutif mesuré, ce nouvel objet nous l'appellons groupoïde quantique algébrique de transformations.Pour être capables de passer au cadre des algèbres d'opérateurs, nous donnons des conditions sur l'intégral de Yetter-Drinfeld qui vont nous permettre d'utiliser la construction Gelfand–Naimark–Segal pour étendre tous nos objets purement algébriques en des objets C*-algébriques. Dans ce contexte, notre construction se fait d'une manière similaire à celle présentée dans le travail de Enock et Timmermann, nous obtenons un nouvel objet mathématique que nous appellons un groupoïde quantique C*-algébrique de transformations, qui est définit en utilisant le langage des C*-bimodules de Hopf sur une C*-base.
- Published
- 2018
40. Realization spaces of algebraic structures on cochains
- Author
-
Sinan Yalin, Laboratoire Angevin de Recherche en Mathématiques (LAREMA), Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS), and Yalin, Sinan
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Algebraic structure ,General Mathematics ,010102 general mathematics ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT] ,01 natural sciences ,[MATH.MATH-CT] Mathematics [math]/Category Theory [math.CT] ,Mathematics::Algebraic Topology ,Algebra ,Mathematics::K-Theory and Homology ,Mathematics::Category Theory ,[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT] ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Algebraic Topology (math.AT) ,010307 mathematical physics ,Mathematics - Algebraic Topology ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,0101 mathematics ,Realization (systems) ,Mathematics ,[MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] - Abstract
Given an algebraic structure on the homology of a chain complex, we define its realization space as a Kan complex whose vertices are the structures up to homotopy realizing this structure at the homology level. Our algebraic structures are parametrised by props and thus include various kinds of bialgebras. We give a general formula to compute subsets of equivalences classes of realizations as quotients of automorphism groups, and determine the higher homotopy groups via the cohomology of deformation complexes. As a motivating example, we compute subsets of equivalences classes of realizations of Poincar\'e duality for several examples of manifolds., Comment: Typo corrections, explanations improved for some technical parts. Correction of a mistake concerning the result about connected components of realization spaces, and another one concerning relative realization spaces. 40 pages, to appear in IMRN
- Published
- 2018
41. Topological quantum field theory for Lie superalgebra sl(2|1)
- Author
-
Ha, Ngoc-Phu, STAR, ABES, Laboratoire de Mathématiques de Bretagne Atlantique (LMBA), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Université de Bretagne Sud, and Bertrand Patureau-Mirand
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Super-symétries ,Trace modifiée ,Algèbre topologique localement convexe ,Representations Lie algebras ,Groupe quantique déroulé ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Invariant de 3-variétés ,Representations of quantum groups ,Lie superalgebras ,Quantum groups ,TQFT - Abstract
This text studies the quantum group Uξ sl(2|1) associated with the Lie superalgebra sl(2|1) and a category of finite dimensional representations. The aim is to construct the topological invariants of 3-manifolds using the notion of modified trace. We first prove that the category CH of the nilpotent weight modules over Uξ sl(2|1) is ribbon and that there exists a modified trace on its ideal of projective modules. Furthermore, CH possesses a relative G-premodular structure which is a sufficient condition to construct an invariant of 3-manifolds of Costantino-Geer-Patureau type. This invariant is the heart of a 1+1+1-TQFT (Topological Quantum Field Theory). Next Hennings proposed from a finite dimensional Hopf algebra, a construction of invariants which does not require to consider the category of its representations. We show that the unrolled H l l quantum group Uξ sl(2|1)/(e1 , f1 ) has a completion which is a topological ribbon Hopf algebra. We construct an invariant of 3-manifolds of Hennings type using this algebraic structure, a discrete Fourier transform, and the notion of G-integrals. The integral in a Hopf algebra is central in the construction of Hennings. The notion of modified trace in a category has recently been revealed to be a generalization of the integrals in a finite dimensional Hopf algebra. In a more general context of infinite dimensional Hopf algebras we prove the relation formulated between the modified trace and the G-integral., Ce texte étudie le groupe quantique Uξ sl(2|1) associé à la superalgèbre de Lie sl(2|1) et une catégorie de ses représentations de dimension finie. L'objectif est de construire des invariants topologiques de 3-variétés en utilisant la notion de trace modifiée. D'abord nous prouvons que la H catégorie CH des modules de poids nilpotents sur Uξ sl(2|1) est enrubannée et qu'il existe une trace modifiée sur son idéal des modules projectifs. De plus CH possède une structure relativement G-prémodulaire ce qui est une condition suffisante pour construire un invariant de 3-variétés à la Costantino-Geer-Patureau. Cet invariant est le cœur d'une 1+1+1-TQFT (Topological Quantum Field Theory). D'autre part Hennings a proposé à partir d'une algèbre de Hopf de dimension finie une construction d’invariants qui dispense de considérer la catégorie de H l l ses représentations. Nous montrons que le groupe quantique déroulé Uξ sl(2|1)/(e1 , f1 ) possède une complétion qui est une algèbre de Hopf enrubannée topologique. Nous construisons un invariant de 3-variétés à la Hennings en utilisant cette structure algébrique, une transformation de Fourier discrète et la notion de G-intégrales. L'intégrale dans une algèbre de Hopf est centrale dans la construction de Hennings. La notion de trace modifiée dans une catégorie s'est récemment révélée être une généralisation des intégrales dans les algèbres de Hopf de dimension finie. Dans un contexte plus général d'algèbre de Hopf de dimension infinie nous prouvons la relation formulée entre la trace modifiée et la G -intégrale.
- Published
- 2018
42. Spectre des syst\'emes int\'egrables quantiques et repr\'esentations lin\'eaires
- Author
-
Hernandez, David and Hernandez, David
- Subjects
High Energy Physics - Theory ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[PHYS.COND.CM-SM] Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,Mathematics - Quantum Algebra ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,Condensed Matter - Statistical Mechanics ,Mathematics - Representation Theory - Abstract
We review arXiv:1308.3444 and arXiv:1104.1891. The structure of the spectrum of a quantum integrable system is crucial to understand its properties. In his seminar 1971 paper, Baxter observed that the spectrum of the "ice model" has a very remarkable form involving polynomials. Then it was conjectured that analog polynomials can be used to describe the spectra of more general quantum integrable systems (arXiv:math/9810055). We discuss how these (generalized Baxter's) polynomials arise naturally in terms of representation theory. This result lead recently to the proof of the conjecture., Comment: Review paper, in french. 15 pages, 4 figures
- Published
- 2018
43. Algebras of quantum monodromy data and decorated character varieties
- Author
-
Mazzocco, Marta, Rubtsov, Vladimir, Chekhov, Leonid, Roubtsov, Vladimir, Edited by Jørgen Ellegaard Andersen, Andrew Dancer and Oscar García-Prada., Loughborough University, Laboratoire Angevin de Recherche en Mathématiques (LAREMA), Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire J.-V. Poncelet (LIFR-MI2P), and Independent University of Moscow (IUM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[NLIN.NLIN-SI] Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI] ,Nonlinear Sciences - Exactly Solvable and Integrable Systems ,monodromy data ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,Mathematics - Algebraic Geometry ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,character varieties ,Mathematics - Quantum Algebra ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,FOS: Mathematics ,MSC classes: 32G34, 32G15, 17B63, 13F60, 57M15 ,Quantum Algebra (math.QA) ,[NLIN.NLIN-SI]Nonlinear Sciences [physics]/Exactly Solvable and Integrable Systems [nlin.SI] ,32G34, 32G15, 17B63, 13F60, 57M15 ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Exactly Solvable and Integrable Systems (nlin.SI) ,quantum algebras ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,Algebraic Geometry (math.AG) ,Mathematical Physics - Abstract
The Riemann-Hilbert correspondence is an isomorphism between the de Rham moduli space and the Betti moduli space, defined by associating to each Fuchsian system its monodromy representation class. In 1997 Hitchin proved that this map is a symplectomorphism. In this paper, we address the question of what happens to this theory if we extend the de Rham moduli space by allowing connections with higher order poles. In our previous paper arXiv:1511.03851, based on the idea of interpreting higher order poles in the connection as boundary components with bordered cusps (vertices of ideal triangles in the Poincar\'e metric) on the Riemann surface, we introduced the notion of decorated character variety to generalize the Betti moduli space. This decorated character variety is the quotient of the space of representations of the fundamental groupoid of arcs by a product of unipotent Borel sub-groups (one per bordered cusp). Here we prove that this representation space is endowed with a Poisson structure induced by the Fock--Rosly bracket and show that the quotient by unipotent Borel subgroups giving rise to the decorated character variety is a Poisson reduction. We deal with the Poisson bracket and its quantization simultaneously, thus providing a quantisation of the decorated character variety. In the case of dimension 2, we also endow the representation space with explicit Darboux coordinates. We conclude with a conjecture on the extended Riemann-Hilbert correspondence in the case of higher order poles., La correspondance de Riemann-Hilbert est un isomorphisme entre l'espace de modules de de Rham et l'espace de modules de Betti défini en s'associant à chaque système Fuchsien sa classe de représentation de monodromie.. Hitchin a prouvé (1997) que ce morphisme est un symplectomorphisme. Dans ce papier, nous abordons la question de ce qui arrive à cette théorie si nous considérons l'espace de modules de de Rham élargie en permettant des connexions avec des pôles d'ordre supérieur.. Dans notre papier précédent (arXiv:1511.03851), basé sur l'idée d'interpréter des pôles de degré supérieur dans la connexion comme des composants de la frontière avec des cusps aux bord (les sommets de triangles idéaux dans la métrique de Poincar\'e) sur la surface de Riemann, nous avons présenté la notion de variété de caractères décorée pour les espaces de modules de Betti. Cette variété de caractère décorée est le quotient de l'espace de représentations d' un groupoïde fondamental d'arcs par un produit des sous-groupes de Borel unipotents (un pour chaque cusp bordé). Ici nous prouvons que cet espace de représentations admet une structure de Poisson induite par les crochets de type Fock - Rosly et nous montrons que le quotient par des sous-groupes de Borel unipotents donne une variété décorée de caractères par une réduction de Poisson. Nous traitons les structures de Poisson et leurs quantifications simultanément, fournissant ainsi un quantisation de la variété de caractères décorée. Dans le cas de rank 2, nous proposons aussi des coordonnées de Darboux explicites sur l'espace de représentations. Nous concluons avec une conjecture sur la correspondance de Riemann-Hilbert "irréguliere" dans le cas des pôles d'ordre supérieur.
- Published
- 2017
44. The Schrödinger Problem and its links with Optimal Transport and Functional Inequalities
- Author
-
Ripani , Luigia, STAR, ABES, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon, Ivan Gentil, Christian Léonard, Institut Camille Jordan [Villeurbanne] ( ICJ ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), and Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Courbure-dimension ,[ MATH.MATH-QA ] Mathematics [math]/Quantum Algebra [math.QA] ,Inégalités Fonctionnelles ,Optimal Transport ,Entropy ,Transport Optimal ,Curvature-dimension ,Functional Inequalities ,Entropie ,Schrödinger Problem ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Problème de Schrödinger ,Bakry-Emery - Abstract
In the past 20 years the optimal transport theory revealed to be an efficient tool to study the asymptotic behavior for diffusion equations, to prove functional inequalities, to extend geometrical properties in extremely general spaces like metric measure spaces, etc. The curvature-dimension of the Bakry-Émery theory appears as the cornerstone of those applications. Just think to the easier and most important case of the quadratic Wasserstein distance W2: contraction of the heat flow in W2 characterizes uniform lower bounds for the Ricci curvature; the transport Talagrand inequality, comparing W2 to the relative entropy is implied and implies via the HWI inequality the log-Sobolev inequality; McCann geodesics in the Wasserstein space (P2(Rn),W2) allow to prove important functional properties like convexity, and standard functional inequalities, such as isoperimetry, measure concentration properties, the Prékopa Leindler inequality and so on. However the lack of regularity of optimal maps, requires non-smooth analysis arguments. The Schrödinger problem is an entropy minimization problem with marginal constraints and a fixed reference process. From the Large deviation theory, when the reference process is driven by the Brownian motion, its minimal value A converges to W2 when the temperature goes to zero. The entropic interpolations, solutions of the Schrödinger problem, are characterized in terms of Markov semigroups, hence computation along them naturally involves Γ2 computations and the curvature-dimension condition. Dating back to the 1930s, and neglected for decades, the Schrödinger problem recently enjoys an increasing popularity in different fields, thanks to this relation to optimal transport, smoothness of solutions and other well performing properties in numerical computations. The aim of this work is twofold. First we study some analogy between the Schrödinger problem and optimal transport providing new proofs of the dual Kantorovich and the dynamic Benamou-Brenier formulations for the entropic cost A. Secondly, as an application of these connections we derive some functional properties and inequalities under curvature-dimensions conditions. In particular, we prove the concavity of the exponential entropy along entropic interpolations under the curvature-dimension condition CD(0, n) and regularity of the entropic cost along the heat flow. We also give different proofs the Evolutionary Variational Inequality for A and contraction of the heat flow in A, recovering as a limit case the classical results in W2, under CD(κ,∞) and also in the flat dimensional case. Finally we propose an easy proof of the Gaussian concentration property via the Schrödinger problem as an alternative to classical arguments as the Marton argument which is based on optimal transport, Au cours des 20 dernières années, la théorie du transport optimal s’est revelée être un outil efficace pour étudier le comportement asymptotique dans le cas des équations de diffusion, pour prouver des inégalités fonctionnelles et pour étendre des propriétés géométriques dans des espaces extrêmement généraux comme des espaces métriques mesurés, etc. La condition de courbure-dimension de la théorie Bakry-Emery apparaît comme la pierre angulaire de ces applications. Il suffit de penser au cas le plus simple et le plus important de la distance quadratique de Wasserstein W2 : la contraction du flux de chaleur en W2 caractérise les bornes inférieures uniformes pour la courbure de Ricci ; l’inégalité de Talagrand du transport, comparant W2 à l’entropie relative est impliquée et implique, par l’inégalité HWI, l’inégalité log-Sobolev ; les géodésiques de McCann dans l’espace de Wasserstein (P2(Rn),W2) permettent de prouver des propriétés fonctionnelles importantes comme la convexité, et des inégalités fonctionnelles standards telles que l’isopérymétrie, des propriétés de concentration de mesure, l’inégalité de Prékopa-Leindler et ainsi de suite. Néanmoins, le manque de régularité des plans minimisation nécessite des arguments d’analyse non lisse. Le problème de Schrödinger est un problème de minimisation de l’entropie avec des contraintes marginales et un processus de référence fixes. À partir de la théorie des grandes déviations, lorsque le processus de référence est le mouvement Brownien, sa valeur minimale A converge vers W2 lorsque la température est nulle. Les interpolations entropiques, solutions du problème de Schrödinger, sont caractérisées en termes de semigroupes de Markov, ce qui implique naturellement les calculs Γ2 et la condition de courbure-dimension. Datant des années 1930 et négligé pendant des décennies, le problème de Schrodinger connaît depuis ces dernières années une popularité croissante dans différents domaines, grâce à sa relation avec le transport optimal, à la regularité de ses solutions, et à d’autres propriétés performantes dans des calculs numériques. Le but de ce travail est double. D’abord, nous étudions certaines analogies entre le problème de Schrödinger et le transport optimal fournissant de nouvelles preuves de la formulation duale de Kantorovich et de celle, dynamique, de Benamou-Brenier pour le coût entropique A. Puis, en tant qu’application de ces connexions, nous dérivons certaines propriétés et inégalités fonctionnelles sous des conditions de courbure-dimension. En particulier, nous prouvons la concavité de l’entropie exponentielle le long des interpolations entropiques sous la condition de courbure-dimension CD(0, n) et la régularité du coût entropique le long du flot de la chaleur. Nous donnons également différentes preuves de l’inégalité variationnelle évolutionnaire pour A et de la contraction du flux de la chaleur en A, en retrouvant comme cas limite, les résultats classiques en W2, sous CD(κ,∞) et CD(0, n). Enfin, nous proposons une preuve simple de la propriété de concentration gaussienne via le problème de Schrödinger comme alternative aux arguments classiques tel que l’argument de Marton basé sur le transport optimal
- Published
- 2017
45. Advances in R-matrices and their applications (after Maulik-Okounkov, Kang-Kashiwara-Kim-Oh,...)
- Author
-
Hernandez, David and Hernandez, David
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,FOS: Physical sciences ,Mathematics - Rings and Algebras ,Mathematical Physics (math-ph) ,[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph] ,Mathematics - Algebraic Geometry ,Rings and Algebras (math.RA) ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA] ,FOS: Mathematics ,Quantum Algebra (math.QA) ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,Representation Theory (math.RT) ,Algebraic Geometry (math.AG) ,Mathematical Physics ,Mathematics - Representation Theory - Abstract
R-matrices are the solutions of the Yang-Baxter equation. At the origin of the quantum group theory, they may be interpreted as intertwining operators. Recent advances have been made independently in different directions. Maulik-Okounkov have given a geometric approach to R-matrices with new tools in symplectic geometry, the stable envelopes. Kang-Kashiwara-Kim-Oh proved a conjecture on the categorification of cluster algebras by using R-matrices in a crucial way. Eventually, a better understanding of the action of transfer-matrices obtained from R-matrices led to the proof of several conjectures about the corresponding quantum integrable systems., Comment: This is an English translation of the Bourbaki seminar 1129 (March 2017). The French version will appear in Ast\'erisque
- Published
- 2017
- Full Text
- View/download PDF
46. Complex semisimple quantum groups and representation theory
- Author
-
Christian Voigt, Robert Yuncken, School of Mathematics and Statistics, University of Glasgow, Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), and Yuncken, Robert
- Subjects
Pure mathematics ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,01 natural sciences ,Representation theory ,[MATH.MATH-KT] Mathematics [math]/K-Theory and Homology [math.KT] ,Base (group theory) ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,0103 physical sciences ,Noncommutative harmonic analysis ,FOS: Mathematics ,16T05, 17B37 ,Quantum Algebra (math.QA) ,0101 mathematics ,Mathematics::Representation Theory ,Mathematics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,010102 general mathematics ,[MATH.MATH-FA] Mathematics [math]/Functional Analysis [math.FA] ,Lie group ,Hopf algebra ,Algebra ,[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] ,Algebra representation ,[MATH.MATH-KT]Mathematics [math]/K-Theory and Homology [math.KT] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Dual polyhedron ,Homomorphism ,010307 mathematical physics ,[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG] ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] - Abstract
These notes contain an introduction to the theory of complex semisimple quantum groups. Our main aim is to discuss the classification of irreducible Harish-Chandra modules for these quantum groups, following Joseph and Letzter. Along the way we cover extensive background material on quantized universal enveloping algebras and explain connections to the analytical theory in the setting of locally compact quantum groups., Comment: Minor revisions. To be published in Lecture Notes in Mathematics
- Published
- 2017
- Full Text
- View/download PDF
47. Complex analogues of the half-classical geometry
- Author
-
Banica, Teodor, Bichon, Julien, Analyse, Géométrie et Modélisation (AGM - UMR 8088), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Laboratoire de Mathématiques Blaise Pascal (LMBP), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Centre National de la Recherche Scientifique (CNRS), Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Bichon, Julien, and Universitäts- und Landesbibliothek Münster
- Subjects
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Mathematics - Quantum Algebra ,FOS: Mathematics ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Quantum Algebra (math.QA) ,510 Mathematik ,ddc:510 ,Mathematics ,ComputingMilieux_MISCELLANEOUS - Abstract
Under very strong axioms, there is precisely one real noncommutative geometry between the classical one and the free one, namely the half-classical one, coming from the relations $abc=cba$. We discuss here the complex analogues of this geometry, notably with a study of the geometry coming from the commutation relations between all the variables $\{ab^*,a^*b\}$, that we believe to be the "correct" one., Comment: 26 pages
- Published
- 2017
- Full Text
- View/download PDF
48. Fusion (semi)rings arising from quantum groups
- Author
-
Amaury Freslon, Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Freslon, Amaury
- Subjects
Pure mathematics ,Class (set theory) ,[MATH.MATH-OA]Mathematics [math]/Operator Algebras [math.OA] ,Quantum groups ,Representation theory ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Haagerup property ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,Representation Theory (math.RT) ,Operator Algebras (math.OA) ,Representation (mathematics) ,Quantum ,Mathematics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Ring (mathematics) ,Fusion ,fusion rings ,Algebra and Number Theory ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Noncrossing partition ,Mathematics - Operator Algebras ,MSC 20G42, 46L65 ,representation theory ,16. Peace & justice ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-OA] Mathematics [math]/Operator Algebras [math.OA] ,Mathematics - Representation Theory - Abstract
We study the fusion semirings arising from easy quantum groups. We classify all the possible free ones, answering a question of T. Banica and R. Vergnioux : these are exactly the fusion rings of quantum groups without any nontrivial one-dimensional representation. We then classify the possible groups of one-dimensional representations for free easy quantum groups. As an application, we give a unified proof of the Haagerup property for a broad class of easy quantum groups, recovering as special cases previous results by M. Brannan and F. Lemeux. We end with some considerations on the description of the full fusion ring in the general case., 35 pages. A flaw in the statement and proof of Thm 6.11 has been corrected
- Published
- 2014
49. Stokes posets and serpent nests
- Author
-
Chapoton, Frédéric, Institut de Recherche Mathématique Avancée (IRMA), Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), and ANR-12-BS01-0017,CARMA,Combinatoire Algébrique, Résurgence, Moules et Applications(2012)
- Subjects
[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO] ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Mathematics::Combinatorics ,Tamari lattice ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,poset ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,quadrangulation ,[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT] ,Computer Science::Computational Geometry ,MSC: 05E 06A11 13F60 - Abstract
30 pages, 12 figures, We study two different objects attached to an arbitrary quadrangulation of a regular polygon. The first one is a poset, closely related to the Stokes polytopes introduced by Baryshnikov. The second one is a set of some paths configurations inside the quadrangulation, satisfying some specific constraints. These objects provide a generalisation of the existing combinatorics of cluster algebras and nonnesting partitions of type A., On étudie deux objets attachés à une quadrangulation quelconque d'un polygone régulier. Le premier objet est un ensemble partiellement ordonné, fortement lié aux polytopes de Stokes introduits par Barysknikov. Le second est un ensemble de configurations de chemins dans la quadrangulation. Ces deux objets généralisent respectivement les aspects combinatoires des algèbres amassées et des partitions non-emboitées de type A.
- Published
- 2016
50. Operads from posets and Koszul duality
- Author
-
Samuele Giraudo, Laboratoire d'Informatique Gaspard-Monge (LIGM), Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM), and Giraudo, Samuele
- Subjects
Koszul duality ,Generalization ,0102 computer and information sciences ,01 natural sciences ,Mathematics::Algebraic Topology ,Combinatorics ,05E99, 05C05, 06A11, 18D50 ,Star product ,Mathematics::K-Theory and Homology ,Mathematics::Quantum Algebra ,Mathematics::Category Theory ,Mathematics - Quantum Algebra ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Discrete Mathematics and Combinatorics ,Mathematics - Combinatorics ,0101 mathematics ,Connection (algebraic framework) ,Associative property ,Mathematics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Functor ,010102 general mathematics ,Hasse diagram ,[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO] ,010201 computation theory & mathematics ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Combinatorics (math.CO) ,Partially ordered set - Abstract
We introduce a functor ${\sf As}$ from the category of posets to the category of nonsymmetric binary and quadratic operads, establishing a new connection between these two categories. Each operad obtained by the construction ${\sf As}$ provides a generalization of the associative operad because all of its generating operations are associative. This construction has a very singular property: the operads obtained from ${\sf As}$ are almost never basic. Besides, the properties of the obtained operads, such as Koszulity, basicity, associative elements, realization, and dimensions, depend on combinatorial properties of the starting posets. Among others, we show that the property of being a forest for the Hasse diagram of the starting poset implies that the obtained operad is Koszul. Moreover, we show that the construction ${\sf As}$ restricted to a certain family of posets with Hasse diagrams satisfying some combinatorial properties is closed under Koszul duality., 40 pages
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.