6,727 results on '"[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]"'
Search Results
2. Extension of the Trotterized Unitary Coupled Cluster to Triple Excitations
- Author
-
Mohammad Haidar, Marko J. Rančić, Yvon Maday, Jean-Philip Piquemal, Laboratoire de chimie théorique (LCT), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), TotalEnergies, Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Sorbonne Université (SU), Biomedical Engineering [Austin], University of Texas at Austin [Austin], and European Project: 810367,EMC2(2019)
- Subjects
Chemical Physics (physics.chem-ph) ,Quantum Physics ,UCCSDT ,FOS: Physical sciences ,triple excitations ,Quantum computing ,QLM ,[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Physics - Chemical Physics ,Coupled cluster theory ,Physical and Theoretical Chemistry ,Quantum Physics (quant-ph) ,Quantum chemistry - Abstract
International audience; The Trotterized Unitary Coupled Cluster Single and Double (UCCSD) ansatz has recently attracted interest due to its use in Variation Quantum Eigensolver (VQE) molecular simulations on quantum computers. However, when the size of molecules increases, UCCSD becomes less interesting as it cannot achieve sufficient accuracy. Including higher-order excitations is therefore mandatory to recover the UCC's missing correlation effects. In this Letter, we extend the Trotterized UCC approach via the addition of (true) Triple T excitations introducing UCCSDT. We also include both spin and orbital symmetries. Indeed, in practice, these later help to reduce unnecessarily circuit excitations and thus accelerate the optimization process enabling to tackle larger molecules. Our initial numerical tests (12-14 qubits) show that UCCSDT improves the overall accuracy by at least two-orders of magnitudes with respect to standard UCCSD. Overall, the UCCSDT ansatz is shown to reach chemical accuracy and to be competitive with the CCSD(T) gold-standard classical method of quantum chemistry.
- Published
- 2023
3. Quantum speedup for graph sparsification, cut approximation, and Laplacian solving
- Author
-
Simon Apers, Ronald de Wolf, Apers, Simon, Centrum Wiskunde & Informatica (CWI), Cryptologie symétrique, cryptologie fondée sur les codes et information quantique (COSMIQ), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centrum voor Wiskunde en Informatica (CWI), Centrum Wiskunde & Informatica (CWI)-Netherlands Organisation for Scientific Research, Simon Apers - Supported by the CWI-Inria International Lab.Ronald de Wolf - Partially supported by the Dutch Research Council (NWO) through Gravitation-grant Quantum Software Consortium - 024.003.037, and through QuantERA projectQuantAlgo 680-91-034., ILLC (FNWI), Quantum Matter and Quantum Information, and Logic and Computation (ILLC, FNWI/FGw)
- Subjects
FOS: Computer and information sciences ,Speedup ,General Computer Science ,General Mathematics ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,FOS: Physical sciences ,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,0102 computer and information sciences ,Computational Complexity (cs.CC) ,Computer Science::Computational Complexity ,01 natural sciences ,Combinatorics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Computer Science::Discrete Mathematics ,TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY ,0103 physical sciences ,Computer Science - Data Structures and Algorithms ,Data Structures and Algorithms (cs.DS) ,010306 general physics ,Computer Science::Data Structures and Algorithms ,[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph] ,Mathematics ,Quantum computer ,Quantum Physics ,Quantum algorithms ,Spanner ,Approximation algorithm ,Graph theory ,Quantum computing ,Computer Science::Numerical Analysis ,Computer Science - Computational Complexity ,010201 computation theory & mathematics ,Graph (abstract data type) ,Quantum algorithm ,Laplacian matrix ,Quantum Physics (quant-ph) ,MathematicsofComputing_DISCRETEMATHEMATICS - Abstract
Graph sparsification underlies a large number of algorithms, ranging from approximation algorithms for cut problems to solvers for linear systems in the graph Laplacian. In its strongest form, "spectral sparsification" reduces the number of edges to near-linear in the number of nodes, while approximately preserving the cut and spectral structure of the graph. In this work we demonstrate a polynomial quantum speedup for spectral sparsification and many of its applications. In particular, we give a quantum algorithm that, given a weighted graph with $n$ nodes and $m$ edges, outputs a classical description of an $\epsilon$-spectral sparsifier in sublinear time $\tilde{O}(\sqrt{mn}/\epsilon)$. This contrasts with the optimal classical complexity $\tilde{O}(m)$. We also prove that our quantum algorithm is optimal up to polylog-factors. The algorithm builds on a string of existing results on sparsification, graph spanners, quantum algorithms for shortest paths, and efficient constructions for $k$-wise independent random strings. Our algorithm implies a quantum speedup for solving Laplacian systems and for approximating a range of cut problems such as min cut and sparsest cut., Comment: v2: several small improvements to the text. An extended abstract will appear in FOCS'20; v3: corrected a minor mistake in Appendix A; v4: final version as published in SICOMP
- Published
- 2022
4. Quantum Pin Codes
- Author
-
Nikolas Breuckmann, Christophe Vuillot, Faculty of Electrical Engineering, Mathematics and Computer Science [Delft], Delft University of Technology (TU Delft), Department of Physics and Astronomy [UCL London], University College of London [London] (UCL), Designing the Future of Computational Models (MOCQUA), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Formal Methods (LORIA - FM), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), and Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,Space exploration ,quantum fault-tolerant computation ,FOS: Physical sciences ,quantum codes ,Logic gates ,Library and Information Sciences ,Codes ,Generators ,Computer Science Applications ,Pins ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Condensed Matter::Superconductivity ,Calderbank-Shor-Steane codes (CSS codes) ,Qubit ,Quantum Physics (quant-ph) ,transversal gates ,quantum error correction ,Protocols ,Information Systems - Abstract
We introduce quantum pin codes: a class of quantum CSS codes. Quantum pin codes are a generalization of quantum color codes and Reed-Muller codes and share a lot of their structure and properties. Pin codes have gauge operators, an unfolding procedure and their stabilizers form so-called $\ell$-orthogonal spaces meaning that the joint overlap between any $\ell$ stabilizer elements is always even. This last feature makes them interesting for devising magic-state distillation protocols, for instance by using puncturing techniques. We study examples of these codes and their properties., 21 pages, 10 figures
- Published
- 2022
5. Hyperfine excitation of 13CCH and C13CH by collisions with para- H2
- Author
-
Pirlot Jankowiak, P., Lique, F, Dagdigian, P J, Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) –UMR 6251, F-35000 Rennes, France, Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218-2685, USA, Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University (JHU), TGCC, European Research Council, ERC, (811363), Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CEA, and Grand Équipement National De Calcul Intensif, GENCI
- Subjects
[PHYS]Physics [physics] ,molecular processes ,molecular data -molecular processes -radiative transfer ,molecular data ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,radiative transfer ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; The computation of hyperfine resolved cross sections and rate coefficients for open-shell molecules in collision with H2 is a true methodological and numerical challenge. Such collisional data are however required to interpret astrophysical observations. We report the first hyperfine resolved rate coefficients for (de-)excitation of 13CCH and C13CH isotopologues induced by collisions with para-H2. These calculations have been performed using a recently published C2H-H2 potential energy surface. Hyperfine resolved cross sections and rate coefficients between the first 98 energy levels of the two isotopologues were determined using a recoupling technique for temperatures ranging from 5 to 100 K. Significant isotopic substitution effects were found, showing the necessity of computing isotopologue specific collisional data. These rate coefficents have then been used in a simple radiative transfer modelling for typical molecular cloud conditions. © 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
- Published
- 2023
6. Quantum Query Complexity of Boolean Functions under Indefinite Causal Order
- Author
-
Abbott, Alastair A., Mhalla, Mehdi, Pocreau, Pierre, Traitement optimal de l'information avec des dispositifs quantiques (QINFO), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Grenoble Alpes (UGA)-Inria Lyon, Institut National de Recherche en Informatique et en Automatique (Inria), Calculs algorithmes programmes et preuves (CAPP), Laboratoire d'Informatique de Grenoble (LIG), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), ANR-15-IDEX-0002,UGA,IDEX UGA(2015), ANR-22-CE47-0012,TaQC,Dompter la causalité quantique(2022), ANR-22-CMAS-0001,QuanTEdu-France,Quantum technologies: Education and training to fulfill the strategic skill needs of research and industry in France(2022), and ANR-22-PETQ-0007,EPiQ,Etude de la pile quantique : Algorithmes, modèles de calcul et simulation pour l'informatique quantique(2022)
- Subjects
[INFO.INFO-CC]Computer Science [cs]/Computational Complexity [cs.CC] ,Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,Quantum Physics (quant-ph) - Abstract
The standard model of quantum circuits assumes operations are applied in a fixed sequential "causal" order. In recent years, the possibility of relaxing this constraint to obtain causally indefinite computations has received significant attention. The quantum switch, for example, uses a quantum system to coherently control the order of operations. Several ad hoc computational and information-theoretical advantages have been demonstrated, raising questions as to whether advantages can be obtained in a more unified complexity theoretic framework. In this paper, we approach this problem by studying the query complexity of Boolean functions under general higher order quantum computations. To this end, we generalise the framework of query complexity from quantum circuits to quantum supermaps to compare different models on an equal footing. We show that the recently introduced class of quantum circuits with quantum control of causal order cannot lead to any reduction in query complexity, and that any potential advantage arising from causally indefinite supermaps can be bounded by the polynomial method, as is the case with quantum circuits. Nevertheless, we find some functions for which the minimum error with which they can be computed using two queries is strictly lower when exploiting causally indefinite supermaps., Comment: 6+11 pages
- Published
- 2023
7. A Linear Algebraic Framework for Dynamic Scheduling Over Memory-Equipped Quantum Networks
- Author
-
Fittipaldi, Paolo, Giovanidis, Anastasios, Grosshans, Frédéric, Information Quantique [LIP6] (QI), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Networks and Performance Analysis (NPA), ANR-21-CMAQ-0001,FQPS (PC),Soutien à la formation aux technologies quantiques - Paris Centre(2021), and European Project: 820445,QIA
- Subjects
Networking and Internet Architecture (cs.NI) ,FOS: Computer and information sciences ,Quantum Physics ,Teleportation ,Scheduling ,Queueing analysis ,FOS: Physical sciences ,Integer programming ,Optimal scheduling ,Scheduling algorithms ,Quantum networks ,Computer Science - Networking and Internet Architecture ,Quantum entanglement ,[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Dynamic Scheduling ,Quantum Communication ,Quantum Physics (quant-ph) ,Lyapunov methods - Abstract
Quantum Internetworking is a recent field that promises numerous interesting applications, many of which require the distribution of entanglement between arbitrary pairs of users. This work deals with the problem of scheduling in an arbitrary entanglement swapping quantum network - often called first generation quantum network - in its general topology, multicommodity, loss-aware formulation. We introduce a linear algebraic framework that exploits quantum memory through the creation of intermediate entangled links. The framework is then employed to mathematically derive a natural class of quadratic scheduling policies for quantum networks by applying Lyapunov Drift Minimization, a standard technique in classical network science. Moreover, an additional class of Max-Weight inspired policies is proposed and benchmarked, reducing significantly the computation cost, at the price of a slight performance degradation. The policies are compared in terms of information availability, localization and overall network performance through an ad-hoc simulator that admits user-provided network topologies and scheduling policies in order to showcase the potential application of the provided tools to quantum network design., Comment: 18 pages, 7 figures. To be submitted to the journal "IEEE Transactions on Quantum Engineering"
- Published
- 2023
8. Compositionality of planar perfect matchings
- Author
-
Carette, Titouan, Moutot, Etienne, Perez, Thomas, Vilmart, Renaud, University of Latvia (LU), Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon), Université de Lyon, Quantum Computation Structures (QuaCS), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Méthodes Formelles (LMF), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Laboratoire Méthodes Formelles (LMF), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), ERDF project 1.1.1.5/18/A/020 'Quantum algorithms: from complexity theory to experiment', ANR-22-PETQ-0007,EPiQ,Etude de la pile quantique : Algorithmes, modèles de calcul et simulation pour l'informatique quantique(2022), and ANR-22-CE47-0012,TaQC,Dompter la causalité quantique(2022)
- Subjects
Completeness ,Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] ,Quantum Computing ,String Diagrams ,ZW-Calculus ,[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] ,Quantum Physics (quant-ph) ,Perfect Matchings Counting ,Matchgates - Abstract
International audience; We exhibit a strong connection between the matchgate formalism introduced by Valiant and the ZW-calculus of Coecke and Kissinger. This connection provides a natural compositional framework for matchgate theory as well as a direct combinatorial interpretation of the diagrams of ZW-calculus through the perfect matchings of their underlying graphs. We identify a precise fragment of ZW-calculus, the planar W-calculus, that we prove to be complete and universal for matchgates, that are linear maps satisfying the matchgate identities. Computing scalars of the planar W-calculus corresponds to counting perfect matchings of planar graphs, and so can be carried in polynomial time using the FKT algorithm, making the planar W-calculus an efficiently simulable fragment of the ZW-calculus, in a similar way that the Clifford fragment is for ZX-calculus. This work opens new directions for the investigation of the combinatorial properties of ZW-calculus as well as the study of perfect matching counting through compositional diagrammatical technics.
- Published
- 2023
9. Sample-Optimal Quantum Process Tomography with non-adaptive Incoherent Measurements
- Author
-
Oufkir, Aadil, Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), and European Project: 851716,ERC-2019-STG,AlgoQIP(2021)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,Quantum Physics (quant-ph) - Abstract
How many copies of a quantum process are necessary and sufficient to construct an approximate classical description of it? We extend the result of Surawy-Stepney, Kahn, Kueng, and Guta (2022) to show that $\tilde{\mathcal{O}}(d_{\text{in}}^3d_{\text{out}}^3/\varepsilon^2)$ copies are sufficient to learn any quantum channel $C^{d_{\text{in}}\times d_{\text{in}}} \rightarrow C^{d_{\text{out}}\times d_{\text{out}}}$ to within $\varepsilon$ in diamond norm. Moreover, we show that $\Omega(d_{\text{in}}^3 d_{\text{out}}^3/\varepsilon^2)$ copies are necessary for any strategy using incoherent non-adaptive measurements. This lower bound applies even for ancilla-assisted strategies.
- Published
- 2023
10. Fano factor, $\Delta T$-noise and cross-correlations in double quantum dots
- Author
-
Crépieux, A., Duong, T. Q., Lavagna, M., Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)
- Subjects
Quantum Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
We present a theoretical study of electrical current fluctuations and finite-frequency noise in a double quantum dot connected to two electron reservoirs with the aim of deriving the Fano factor, the $\Delta T$-noise and the cross-correlations. This allows one to highlight several interesting features. Firstly the possibility of getting a significant reduction of current noise and Fano factor either when the system is placed in a given operating regime, or when a temperature gradient is applied between the two reservoirs, resulting from the fact that a negative $\Delta T$-noise is generated. The second feature is the sign change found in the cross-correlator between the two reservoirs with increasing frequencies. This study clarifies the understanding of the results obtained experimentally in such systems., Comment: 5 pages, 6 figures
- Published
- 2023
11. A solvable model for graph state decoherence dynamics
- Author
-
Houdayer, Jérôme, Landa, Haggai, Misguich, Grégoire, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), IBM Research [HAIFA], and IBM R&D Labs in Israel
- Subjects
[PHYS]Physics [physics] ,entropy, entanglement ,Quantum Physics ,toy model ,FOS: Physical sciences ,master equation ,dissipation ,Hamiltonian ,Condensed Matter - Other Condensed Matter ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,quantum information ,Pauli ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Quantum Physics (quant-ph) ,decoherence ,qubit ,Other Condensed Matter (cond-mat.other) - Abstract
We present an exactly solvable toy model for the continuous dissipative dynamics of permutation-invariant graph states of N qubits. Such states are locally equivalent to an N-qubit Greenberger-Horne-Zeilinger (GHZ) state, a fundamental resource in many quantum information processing setups. We focus on the time evolution of the state governed by a Lindblad master equation with the three standard single-qubit jump operators, the Hamiltonian part being set to zero. Deriving analytic expressions for the expectation values of observables expanded in the Pauli basis at all times, we analyze the nontrivial intermediate-time dynamics. Using a numerical solver based on matrix product operators we simulate the time evolution for systems with up to 64 qubits and verify a numerically exact agreement with the analytical results. We find that the evolution of the operator space entanglement entropy of a bipartition of the system manifests a plateau whose duration increases logarithmically with the number of qubits, whereas all Pauli-operator products have expectation values decaying at most in constant time., Comment: 14 pages, 10 figures
- Published
- 2023
12. Magnetic resonance of a single electron spin and its magnetic environment by photon counting
- Author
-
Balembois, Léo, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Daniel Estève, Emmanuel Flurin, and Patrice Bertet
- Subjects
[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,Résonance paramagnétique électronique ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Electron spin resonance ,Qubit ,Circuits supraconducteurs ,Superconducting circuits - Abstract
Magnetic resonance is a branch of science that aims to detect spins via their absorption and emission of electromagnetic radiation. There are two sub-branches : Nuclear Magnetic Resonance (NMR), which applies to atomic spins, and Electronic Paramagnetic Resonance (EPR), which applies to unpaired electron spins. In both cases, commercial instruments are limited to measuring large ensembles of spins and only provide averages of their collective response. In this thesis, we perform EPR of individual Erbium ions inserted in a scheelite crystal using a new detec-tion method based on the microwave fluorescence emitted by the spins during their relaxation. To promote photon emission, the spins are coupled to a superconducting resonator with a small mode volume and low losses, generating a Purcell effect. The output of the resonator is connected to a microwave photon detector based on a superconducting qubit and a 4-wave micing. The high sensitivity of this detector S = 10⁻²² W/√Hz is one of the keys to the success of this experiment. Our method is applicable to all types of paramagnetic impurities without requiring an optical transition or a large coherence time. We measure the characteristics of several individual spins, the results vary strongly from one spin to another, highlighting the inhomogeneity of their electromagnetic environments. The coherence times reach several milliseconds and are radiatively limited. Finally, we perform an experiment to probe the magnetic environment of a particular impurity using a dynamic decoupling sequence. The resonance signal allows us to demonstrate the presence of ¹⁸³W nuclear spin. We finally make some preliminary hypotheses on their arrangement around the erbium ion studied.; La résonance magnétique est une branche de la science qui vise à détecter les spins via leur absorption et émission de rayonnement électromagnétique. On distingue deux sous-branches : la Résonance Magnétique Nucléaire (RMN) qui s’applique aux spins atomiques et la Résonance Paramagnétique Electronique (RPE) qui s’applique aux spins électroniques non appariés. Dans les deux cas, les appareils commerciaux sont limités à la mesure de vastes ensembles de spins et ne fournissent que des moyennes de leur réponse collective. Dans cette thèse, nous réalisons la RPE d’ion Erbium individuels insérés dans un cristald e scheelite en utilisant une nouvelle méthode de détection basée sur la fluorescence micro-onde émise par les spins pendant leur relaxation. Pour favoriser l’émission de photon, les spins sont couplés à un résonateur supraconducteur ayant un petit volume de mode et de faibles pertes, générant un effet Purcell. La sortie du résonateur est connectée à un compteur de photon micro-onde basé sur un qubit supraconducteur et un mélange à 4 ondes. La grande sensibilité de ce détecteur S = 10⁻²² W/√Hz est une des clés de la réussite de cette expérience. Notre méthode s’applique à tous types d’impuretés paramagnétiques sans nécessiter une transition optique ni un grand temps de cohérence. Nous mesurons les caractéristiques de plusieurs spins individuels, les résultats varient fortement d’un spin à l’autre, mettant en avant l’inhomogénéité de leurs environnements électromagnétiques. Les temps de cohérence atteignent plusieurs millisecondes et sont limités radiativement. Finalement, nous réalisons une expérience visant à sonder l’environnement magnétique d’une impureté particulière grâce à une séquence de découplage dynamique. Le signal à résonance nous permet de mettre en évidence la présence de spin nucléaire de ¹⁸³W. Nous émettons finalement quelques hypothèses préliminaires sur leur disposition autour de l’ion erbium étudié.
- Published
- 2023
13. Sums of squares certificates for polynomial moment inequalities
- Author
-
Klep, Igor, Magron, Victor, Volčič, Jurij, Department of Mathematics (University of Ljubljana), University of Ljubljana, Equipe Polynomial OPtimization (LAAS-POP), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Institut de Mathématiques de Toulouse UMR5219 (IMT), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Drexel University, This work was supported by the Slovenian Research Agency grants J1-2453, N1-0217, J1-3004 and P1-0222, the NSF grant DMS-1954709, the FastQI grant funded by the Institut Quantique Occitan, the PHC Proteus grant 46195TA as well as by the NationalResearch Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence andTechnological Enterprise (CREATE) programme., ANR-11-LABX-0040,CIMI,Centre International de Mathématiques et d'Informatique (de Toulouse)(2011), ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019), European Project: 813211,H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (Main Programme), and H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers ,10.3030/813211,POEMA(2019)
- Subjects
Mathematics - Functional Analysis ,Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Optimization and Control (math.OC) ,13J30, 44A60, 60E15, 90C22, 46G12, 47L60, 81-08 ,FOS: Mathematics ,FOS: Physical sciences ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,Quantum Physics (quant-ph) ,Mathematics - Optimization and Control ,Functional Analysis (math.FA) - Abstract
This paper introduces and develops the algebraic framework of moment polynomials, which are polynomial expressions in commuting variables and their formal mixed moments. Their positivity and optimization over probability measures supported on semialgebraic sets and subject to moment polynomial constraints is investigated. A positive solution to Hilbert's 17th problem for pseudo-moments is given. On the other hand, moment polynomials positive on actual measures are shown to be sums of squares and formal moments of squares up to arbitrarily small perturbation of their coefficients. When only measures supported on a bounded semialgebraic set are considered, a stronger algebraic certificate for moment polynomial positivity is derived. This result gives rise to a converging hierarchy of semidefinite programs for moment polynomial optimization. Finally, as an application, two nonlinear Bell inequalities from quantum physics are settled., 26 pages
- Published
- 2023
14. From Lindblad master equations to Langevin dynamics and back
- Author
-
Coppola, Michele, Daouma, Zoubair, Henkel, Malte, Laboratoire de Physique et Chimie Théoriques (LPCT), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), and Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,Statistical Mechanics (cond-mat.stat-mech) ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Quantum Physics (quant-ph) ,Condensed Matter - Statistical Mechanics ,Mathematical Physics - Abstract
A case study of the non-equilibrium dynamics of open quantum systems in the markovian approximation is presented for two dynamical models based on a single harmonic oscillator in an external field. Specified through distinct forms of ohmic damping, their quantum Langevin equations are derived from an identical set of physical criteria, namely the canonical commutator between position and momentum, the Kubo formula, the virial theorem and the quantum equilibrium variance. The associated Lindblad equations are derived but only one of them is completely positive. Transforming those into Fokker-Planck equations for the Wigner functions, both models are shown to evolve towards the same Gibbs state, for a vanishing external field. The phenomenological differences between the models are illustrated through their quantum relaxations and through the phase diagrammes derived from their re-interpretation as mean-field approximations of an interacting many-body system., Comment: 4 figures
- Published
- 2023
15. Correlations constrained by composite measurements
- Author
-
Selby, John H., Sainz, Ana Belén, Magron, Victor, Czekaj, Łukasz, Horodecki, Michał, University of Gdańsk (UG), Equipe Polynomial OPtimization (LAAS-POP), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Institut de Mathématiques de Toulouse UMR5219 (IMT), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Foundation for Polish Science (IRAP project, ICTQT, contract no.2018/MAB/5, co-financed by EU within Smart Growth Operational Programme), FastQI grant funded by the Institut Quantique Occitan, the PHC Proteus grant 46195TA, the National ResearchFoundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme, ANR-11-LABX-0040,CIMI,Centre International de Mathématiques et d'Informatique (de Toulouse)(2011), ANR-19-P3IA-0004,ANITI,Artificial and Natural Intelligence Toulouse Institute(2019), European Project: 813211,H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions (Main Programme), and H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers ,10.3030/813211,POEMA(2019)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,Quantum Physics (quant-ph) - Abstract
How to understand the set of correlations admissible in nature is one outstanding open problem in the core of the foundations of quantum theory. Here we take a complementary viewpoint to the device-independent approach, and explore the correlations that physical theories may feature when restricted by some particular constraints on their measurements. We show that demanding that a theory exhibits {a composite} measurement imposes a hierarchy of constraints on the structure of its sets of states and effects, which translate to a hierarchy of constraints on the allowed correlations themselves. We moreover focus on the particular case where one demands the existence of a correlated measurement that reads out the parity of local fiducial measurements. By formulating a non-linear Optimisation Problem, and semidefinite relaxations of it, we explore the consequences of the existence of such a parity reading measurement for violations of Bell inequalities. In particular, we show that in certain situations this assumption has surprisingly strong consequences, namely, that Tsirelson's bound can be recovered., Comment: 43 pages. V3 -- new numerical results
- Published
- 2023
16. Excitation of $^{87}$Rb Rydberg atoms to nS and nD states (n$\leq$68) via an optical nanofiber
- Author
-
Vylegzhanin, Alexey, Brown, Dylan J., Raj, Aswathy, Kornovan, Danil F., Everett, Jesse L., Brion, Etienne, Robert, Jacques, Chormaic, Síle Nic, Okinawa Institute of Science and Technology Graduate University, Aarhus University [Aarhus], Laboratoire Collisions Agrégats Réactivité (LCAR), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique des gaz et des plasmas (LPGP), and Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Atomic Physics (physics.atom-ph) ,FOS: Physical sciences ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Physics - Atomic Physics - Abstract
International audience; Cold Rydberg atoms are a promising platform for quantum technologies and combining them with optical waveguides has the potential to create robust quantum information devices. Here, we experimentally observe the excitation of cold rubidium atoms to a large range of Rydberg S and D states through interaction with the evanescent field of an optical nanofiber. We develop a theoretical model to account for experimental phenomena present such as the AC Stark shifts and the Casimir-Polder interaction. This work strengthens the knowledge of Rydberg atom interactions with optical nanofibers and is a critical step toward the implementation of all-fiber quantum networks and waveguide QED systems using highly excited atoms.
- Published
- 2023
17. Quantum to classical parton dynamics in QCD media
- Author
-
Barata, João, Blaizot, Jean-Paul, Mehtar-Tani, Yacine, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,entropy, von Neumann ,quark, energy ,FOS: Physical sciences ,color, singlet ,density matrix, reduced ,master equation ,Wigner ,suppression ,boundary condition ,High Energy Physics - Phenomenology ,Langevin equation ,transverse ,phase space ,High Energy Physics - Phenomenology (hep-ph) ,energy, high ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,quantum chromodynamics ,propagation ,parton ,stochastic ,correlation function ,Quantum Physics (quant-ph) - Abstract
We study the time evolution of the density matrix of a high energy quark propagating in a dense QCD medium where it undergoes elastic collisions (radiation is ignored in the present study). The medium is modeled as a stochastic color field with a Gaussian correlation function. This allows us to eliminate the medium degrees of freedom and obtain a simple master equation for the evolution of the reduced density matrix of the high energy quark, making use of approximations that are familiar in the description of open quantum systems. This master equation is solved analytically, and we demonstrate that its solution can be reconstructed from a simple Langevin equation. At late times, one finds that only the color singlet component of the density matrix survives the quark's propagation through the medium. The off-diagonal elements of the density matrix are suppressed successively in transverse position space and in momentum space, and become independent of the details of the initial condition. This behavior is reflected in the corresponding von Neumann entropy, whose growth at late time is related to the increase of the classical phase space explored by the high energy quark in its motion through the medium. The interpretation of the Wigner transform as a classical distribution is further supported by the fact that the associated classical entropy coincides at late time with the von Neumann entropy., 15 pages, 6 figures
- Published
- 2023
18. A physical noise model for quantum measurements
- Author
-
Loulidi, Faedi, Nechita, Ion, Pellegrini, Clément, Laboratoire de Physique Théorique (LPT), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
noise ,Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,quantum state ,FOS: Physical sciences ,measurement theory ,Quantum Physics (quant-ph) - Abstract
International audience; In this paper we introduce a novel noise model for quantum measurements motivated by an indirect measurement scheme with faulty preparation. Averaging over random dynamics governing the interaction between the quantum system and a probe, a natural, physical noise model emerges. We compare it to existing noise models (uniform and depolarizing) in the framework of incompatibility robustness. We observe that our model allows for larger compatibility regions for specific classes of measurements.
- Published
- 2023
19. Breaking the chains: extreme value statistics and localization in random spin chains
- Author
-
Colbois, Jeanne, Laflorencie, Nicolas, Laboratoire de Physique Théorique (LPT), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Quantum Physics ,Statistical Mechanics (cond-mat.stat-mech) ,Strongly Correlated Electrons (cond-mat.str-el) ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,Disordered Systems and Neural Networks (cond-mat.dis-nn) ,Condensed Matter - Disordered Systems and Neural Networks ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Quantum Physics (quant-ph) ,Condensed Matter - Statistical Mechanics - Abstract
Despite a very good understanding of single-particle Anderson localization in one-dimensional (1D) disordered systems, many-body effects are still full of surprises, a famous example being the interaction-driven many-body localization (MBL) problem, about which much has been written, and perhaps the best is yet to come. Interestingly enough the non-interacting limit provides a natural playground to study non-trivial multiparticle physics, offering the possibility to test some general mechanisms with very large-scale exact diagonalization simulations. In this work, we first revisit the 1D many-body Anderson insulator through the lens of extreme value theory, focusing on the extreme polarizations of the equivalent spin chain model in a random magnetic field. A many-body-induced chain breaking mechanism is explored numerically, and compared to an analytically solvable toy model. A unified description, from weak to large disorder strengths $W$ emerges, where the disorder-dependent average localization length $\xi(W)$ governs the extreme events leading to chain breaks. In particular, tails of the local magnetization distributions are controlled by $\xi(W)$. Remarkably, we also obtain a quantitative understanding of the full distribution of the extreme polarizations, which is given by a Fr\'echet-type law. In a second part, we explore finite interaction physics and the MBL question. For the available system sizes, we numerically quantify the difference in the extreme value distributions between the interacting problem and the non-interacting Anderson case. Strikingly, we observe a sharp "extreme-statistics transition" as $W$ changes, which may coincide with the MBL transition., Comment: 18 + 6 pages; 13 + 4 figures
- Published
- 2023
20. On sampling determinantal and Pfaffian point processes on a quantum computer
- Author
-
Bardenet, Rémi, Fanuel, Michaël, Feller, Alexandre, Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), ANR-20-CHIA-0002,Baccarat,Apprentissage bayésien pour les modèles coûteux, avec applications à la biologie cellulaire(2020), and European Project: ERC-2019-STG-851866,Blackjack
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Quantum Physics ,fermionic systems ,FOS: Physical sciences ,Givens rotations ,Determinantal and Pfaffian point processes ,Statistics - Computation ,Machine Learning (cs.LG) ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,quantum circuits ,Quantum Physics (quant-ph) ,[STAT.CO]Statistics [stat]/Computation [stat.CO] ,Computation (stat.CO) - Abstract
DPPs were introduced by Macchi as a model in quantum optics the 1970s. Since then, they have been widely used as models and subsampling tools in statistics and computer science. Most applications require sampling from a DPP, and given their quantum origin, it is natural to wonder whether sampling a DPP on a quantum computer is easier than on a classical one. We focus here on DPPs over a finite state space, which are distributions over the subsets of $\{1,\dots,N\}$ parametrized by an $N\times N$ Hermitian kernel matrix. Vanilla sampling consists in two steps, of respective costs $\mathcal{O}(N^3)$ and $\mathcal{O}(Nr^2)$ operations on a classical computer, where $r$ is the rank of the kernel matrix. A large first part of the current paper consists in explaining why the state-of-the-art in quantum simulation of fermionic systems already yields quantum DPP sampling algorithms. We then modify existing quantum circuits, and discuss their insertion in a full DPP sampling pipeline that starts from practical kernel specifications. The bottom line is that, with $P$ (classical) parallel processors, we can divide the preprocessing cost by $P$ and build a quantum circuit with $\mathcal{O}(Nr)$ gates that sample a given DPP, with depth varying from $\mathcal{O}(N)$ to $\mathcal{O}(r\log N)$ depending on qubit-communication constraints on the target machine. We also connect existing work on the simulation of superconductors to Pfaffian point processes, which generalize DPPs and would be a natural addition to the machine learner's toolbox. Finally, the circuits are empirically validated on a classical simulator and on 5-qubit machines., Comment: 48 pages, 8 figures. Additional results about parity of cardinality of PfPP samples
- Published
- 2023
21. Matrix Mechanics Mis-Prized: Max Born's Belated Nobelization
- Author
-
Heilbron, John L., Rovelli, Carlo, Centre de Physique Théorique - UMR 7332 (CPT), and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Physics - History and Philosophy of Physics ,History and Philosophy of Physics (physics.hist-ph) ,FOS: Physical sciences ,Quantum Physics (quant-ph) - Abstract
We examine evaluations of the contributions of Matrix Mechanics and Max Born to the formulation of quantum mechanics from Heisenberg's Helgoland paper of 1925 to Born's Nobel Prize of 1954. We point out that the process of evaluation is continuing in the light of recent interpretations of the theory that deemphasize the importance of the wave function., 58 pages
- Published
- 2023
22. Comparing the quantum switch and its simulations with energetically constrained operations
- Author
-
Marco Fellous-Asiani, Raphaël Mothe, Léa Bresque, Hippolyte Dourdent, Patrice A. Camati, Alastair A. Abbott, Alexia Auffèves, Cyril Branciard, Nanophysique et Semiconducteurs (NEEL - NPSC), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Warsaw University of Technology [Warsaw], Traitement optimal de l'information avec des dispositifs quantiques (QINFO), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Grenoble Alpes (UGA)-Inria Lyon, Institut National de Recherche en Informatique et en Automatique (Inria), Institut de Ciencies Fotoniques [Castelldefels] (ICFO), Templeton World Charity Foundation, Inc. (grant number TWCF0338)EU NextGen Funds and the Government of Spain (FIS2020-TRANQI and Severo Ochoa CEX2019-000910-S)Fundacio Cellex, Fundacío Mir-Puig, Generalitat de Catalunya (CERCA program), and ANR-15-IDEX-0002,UGA,IDEX UGA(2015)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,General Physics and Astronomy ,Quantum Physics (quant-ph) - Abstract
Quantum mechanics allows processes to be superposed, leading to a genuinely quantum lack of causal structure. For example, the process known as the quantum switch applies two operations ${\cal A}$ and ${\cal B}$ in a superposition of the two possible orders, ${\cal A}$ before ${\cal B}$ and ${\cal B}$ before ${\cal A}$. Experimental implementations of the quantum switch have been challenged by some on the grounds that the operations ${\cal A}$ and ${\cal B}$ were implemented more than once, thereby simulating indefinite causal order rather than actually implementing it. Motivated by this debate, we consider a situation in which the quantum operations are physically described by a light-matter interaction model. While for our model the two processes are indistinguishable in the infinite energy regime, restricting the energy available for the implementation of the operations introduces imperfections, which allow one to distinguish processes using different number of operations. We consider such an energetically-constrained scenario and compare the quantum switch to one of its natural simulations, where each operation is implemented twice. Considering a commuting-vs-anticommuting unitary discrimination task, we find that within our model the quantum switch performs better, for some fixed amount of energy, than its simulation. In addition to the known computational or communication advantages of causal superpositions, our work raises new questions about their potential energetic advantages., Comment: Updated version with a slightly modified abstract and conclusion emphasizing more on the exact assumptions and outcomes of the work. The Fig1 has a rewritten legend. Minor details were also added on various parts
- Published
- 2023
23. Resilient infinite randomness criticality for a disordered chain of interacting Majorana fermions
- Author
-
Chepiga, Natalia, Laflorencie, Nicolas, Laboratoire de Physique Théorique (LPT), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Statistical Mechanics (cond-mat.stat-mech) ,Strongly Correlated Electrons (cond-mat.str-el) ,FOS: Physical sciences ,Disordered Systems and Neural Networks (cond-mat.dis-nn) ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Condensed Matter - Disordered Systems and Neural Networks ,Quantum Physics (quant-ph) ,Condensed Matter - Statistical Mechanics - Abstract
The quantum critical properties of interacting fermions in the presence of disorder are still not fully understood. While it is well known that for Dirac fermions, interactions are irrelevant to the non-interacting infinite randomness fixed point (IRFP), the problem remains largely open in the case of Majorana fermions which further display a much richer disorder-free phase diagram. Here, pushing the limits of DMRG simulations, we carefully examine the ground-state of a Majorana chain with both disorder and interactions. Building on appropriate boundary conditions and key observables such as entanglement, energy gap, and correlations, we strikingly find that the non-interacting Majorana IRFP is very stable against finite interactions, in contrast with previous claims., 5+2 pages, 5+4 figures
- Published
- 2023
24. On the consistency of relative facts
- Author
-
Cavalcanti, Eric G, Di Biagio, Andrea, Rovelli, Carlo, Centre de Physique Théorique - UMR 7332 (CPT), and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,Quantum Physics (quant-ph) - Abstract
Lawrence et al. have presented an argument purporting to show that "relative facts do not exist" and, consequently, "Relational Quantum Mechanics is incompatible with quantum mechanics". The argument is based on a GHZ-like contradiction between constraints satisfied by measurement outcomes in an extended Wigner's friend scenario. Here we present a strengthened version of the argument, and show why, contrary to the claim by Lawrence et al., these arguments do not contradict the consistency of a theory of relative facts. Rather, considering this argument helps clarify how one should not think about a theory of relative facts, like RQM., 4 pages
- Published
- 2023
25. Addressing individual electronic spins with a microwave superconducting resonator
- Author
-
Wang, Zhiren, Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Quantique [Sherbrooke] (UdeS), Université de Sherbrooke (UdeS), Université Paris-Saclay, Université de Sherbrooke (Québec, Canada), Denis Vion, Michel Pioro-Ladrière, and Patrice Bertet
- Subjects
Quantum circuit ,Spin ,Resonance paramagnétique électronique ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Electron spin resonance ,Single photon counter ,Quantum dot ,Boite quantique ,Compteur de photon unique ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Circuit quantique - Abstract
Single spins in solids are good candidates for implementing quantum bits for quantum information processing thanks to their long coherence times. However, being individual atomic-scale quantum objects, they are difficult to address and to entangle with one another. This thesis work explores two distinct but related approaches for manipulating and detecting single spins, both involving comparable hybrid circuit quantum electrodynamics platforms operated at millikelvin temperatures. In the first approach, single electron spin resonance (ESR) is demonstrated by spin fluorescence detection: a microwave photon counter is used to detect the photon emitted by an excited spin. The spins are paramagnetic erbium ions in a scheelite crystal, and are coupled magnetically to a high-quality factor planar superconducting resonator. They are detected individually with a signal-to-noise ratio of 1.9 in a one second-integration time. The fluorescence signal shows anti-bunching, proving that it comes from individual emitters. Coherence times up to 3 ms are measured, limited by the engineered spin radiative lifetime. This single-spin quantum control experiment also opens the route to new applications of ESR, in particular for microscopic object characterization. In the second approach, the detection of spins is based on leveraging the charge degree of freedom of hole spins and their strong intrinsic spin-orbit interaction. We demonstrate a compact novel platform made of electrostatically defined quantum dots in AlGaAs/GaAs heterostructure, filled with hole spins by optical illumination. The spins are coupled electrically to a superconducting resonator for probing their charge and spin states. Using this resonator as a dispersive readout, we show that single charge tunneling events in the dots can be detected after illumination. This represents a critical step towards addressing single hole spin in a semiconductor. Overall, the two methods reported in this thesis open new avenues for the development of quantum sensing and quantum computing applications.; Les spins uniques dans les solides sont de bons candidats pour la mise en œuvre de bits quantiques pour le traitement de l'information quantique grâce à leurs longs temps de cohérence. Cependant, en tant qu'objets quantiques individuels à l'échelle atomique, ils sont difficiles à traiter et à enchevêtrer les uns avec les autres. Ce travail de thèse explore deux approches distinctes mais liées pour manipuler et détecter des spins uniques ; toutes deux utilisent des circuits quantiques hybrides fonctionnant à des températures de l'ordre du millikelvin. Dans la première approche, la résonance paramagnétique électronique (RPE) de spins individuels est démontrée en détectant leur fluorescence : un compteur de photons micro-onde détecte le photon émis par un spin excité. Les spins utilisés sont des ions paramagnétiques d'erbium dans un cristal de scheelite, et sont couplés magnétiquement à un résonateur planaire supraconducteur de facteur de qualité élevé. Ils sont détectés individuellement avec un rapport signal/bruit de 1,9 en une seconde. Le signal de fluorescence présente de l'antibunching (dégroupement), prouvant ainsi qu'il provient d'émetteurs individuels. Des temps de cohérence allant jusqu'à 3 ms sont mesurés, limités par le temps de vie radiatif du spin. Cette expérience de contrôle quantique d'un spin unique ouvre également la voie à de nouvelles applications de RPE, notamment pour la caractérisation d'objets microscopiques. Dans la seconde approche, la détection des spins est basée sur l'exploitation du degré de liberté de charge des spins de trous et de leur forte interaction spin-orbite intrinsèque. Nous démontrons une nouvelle plateforme compacte composée de boîtes quantiques définis électrostatiquement dans l'AsGa, et pré-remplis de spins de trous par illumination dans le domaine optique ; les spins sont couplés électriquement à un résonateur supraconducteur pour sonder leurs états de charge et de spin. En utilisant ce résonateur en régime de lecture dispersive, nous montrons que des sauts de charge unique dans les boîtes quantiques peuvent être détectées après l'illumination. Il s'agit d'une étape cruciale dans l'étude du spin d'un trou unique dans un semi-conducteur. Dans l'ensemble, les deux méthodes présentées dans cette thèse ouvrent de nouvelles voies pour le développement des capteurs quantiques et du traitement quantique de l'information.
- Published
- 2023
26. Towards the device-independent certification of a quantum memory
- Author
-
Sekatski, Pavel, Bancal, Jean-Daniel, Ioannou, Marie, Afzelius, Mikael, Brunner, Nicolas, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,network ,FOS: Physical sciences ,quantum memory ,measurement theory ,quantum communication ,Quantum Physics (quant-ph) ,qubit - Abstract
Quantum memories represent one of the main ingredients of future quantum communication networks. Their certification is therefore a key challenge. Here we develop efficient certification methods for quantum memories. Considering a device-independent approach, where no a priori characterisation of sources or measurement devices is required, we develop a robust self-testing method for quantum memories. We then illustrate the practical relevance of our technique in a relaxed scenario by certifying a fidelity of 0.87 in a recent solid-state ensemble quantum memory experiment. More generally, our methods apply for the characterisation of any device implementing a qubit identity quantum channel., 5+11 pages, 1 figure
- Published
- 2023
27. Evolution of the wave-function's shape in a time-dependent harmonic potential
- Author
-
Livine, Etera R, Laboratoire de Physique de l'ENS Lyon (Phys-ENS), and École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,Quantum Physics (quant-ph) - Abstract
An effective operational approach to quantum mechanics is to focus on the evolution of wave-packets, for which the wave-function can be seen in the semi-classical regime as representing a classical motion dressed with extra degrees of freedom describing the shape of the wave-packet and its fluctuations. These quantum dressing are independent degrees of freedom, mathematically encoded in the higher moments of the wave-function. We review how to extract the effective dynamics for Gaussian wave-packets evolving according to the Schrodinger equation with time-dependent potential in a 1+1-dimensional spacetime, and derive the equations of motion for the quadratic uncertainty. We then show how to integrate the evolution of all the higher moments for a general wave-function in a time-dependent harmonic potential., 7 pages, v2: references and footnotes added
- Published
- 2023
28. Cyclic quantum engines enhanced by strong bath coupling
- Author
-
Latune, Camille L., Pleasance, Graeme, Petruccione, Francesco, Laboratoire de Physique de l'ENS Lyon (Phys-ENS), and École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,Statistical Mechanics (cond-mat.stat-mech) ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Quantum Physics (quant-ph) ,Condensed Matter - Statistical Mechanics - Abstract
While strong system-bath coupling produces rich and interesting phenomena, applications to quantum thermal engines have been so far pointing mainly at detrimental effects. The delicate trade-off between efficiency loss due to strong coupling and power increase due to faster equilibration, while acknowledged, remained largely unexplored owing to the challenge of assessing precisely the equilibration time. Here, we overcome this obstacle by exploiting exact numerical simulations based on the hierarchical equations of motion (HEOM) formalism. We show that a quantum Otto cycle can perform better at strong (but not ultrastrong) coupling in that the product of the efficiency times the output power is maximized in this regime. In particular, we show that strong coupling allows one to obtain engines with larger efficiency than their weakly coupled counterparts, while sharing the same output power. Conversely, one can design strongly coupled engines with larger power than their weakly coupled counterparts, while sharing the same efficiency. Overall, our results provide situations where strong coupling can directly enhance the performance of thermodynamic operations, re-enforcing the importance of studying quantum thermal engines beyond standard configurations., 10 + 10 pages, 9 + 3 figures. Slight changes in the introduction. Comments are welcome
- Published
- 2023
29. Single-active-element demultiplexed multi-photon source
- Author
-
Hansen, Lena M., Carosini, Lorenzo, Jehle, Lennart, Giorgino, Francesco, Houvenaghel, Romane, Vyvlecka, Michal, Loredo, Juan C., Walther, Philip, Laboratoire de Physique de l'ENS Lyon (Phys-ENS), and École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,Quantum Physics (quant-ph) - Abstract
Temporal-to-spatial demultiplexing routes non-simultaneous events of the same spatial mode to distinct output trajectories. This technique has now been widely adopted because it gives access to higher-number multi-photon states when exploiting solid-state quantum emitters. However, implementations so far have required an always-increasing number of active elements, rapidly facing resource constraints. Here, we propose and demonstrate a demultiplexing approach that utilizes only a single active element for routing to, in principle, an arbitrary number of outputs. We employ our device in combination with a high-efficiency quantum dot based single-photon source, and measure up to eight demultiplexed highly indistinguishable single photons. We discuss the practical limitations of our approach, and describe in which conditions it can be used to demultiplex, e.g., tens of outputs. Our results thus provides a path for the preparation of resource-efficient larger-scale multi-photon sources., 7 pages, 7 figures
- Published
- 2023
30. Polytope compatibility: from quantum measurements to magic squares
- Author
-
Bluhm, Andreas, Nechita, Ion, Schmidt, Simon, Calculs algorithmes programmes et preuves (CAPP), Laboratoire d'Informatique de Grenoble (LIG), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire de Physique Théorique (LPT), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Centre for the Mathematics of Quantum Theory (QMATH), Department of Mathematical Sciences [Copenhagen], Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH)-Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), PHC program Star (Applications of randommatrix theory and abstract harmonic analysis to quantum information theory), ANR-20-CE47-0014,ESQuisses,Évolutions Stochastiques Quantiques(2020), ANR-20-CE40-0008,STARS,Espace de trafics et asymptotiques de spectres aléatoires(2020), and European Project
- Subjects
Quantum information ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,ION NECHITA ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,matrix convex set ,Magic square ,Joint measurability ,SIMON SCHMIDT ,Polytope ,Measurement compatibility ,ANDREAS BLUHM - Abstract
37 pages, 3 figures; Several central problems in quantum information theory (such as measurement compatibility and quantum steering) can be rephrased as membership in the minimal matrix convex set corresponding to special polytopes (such as the hypercube or its dual). In this article, we generalize this idea and introduce the notion of polytope compatibility, by considering arbitrary polytopes. We find that semiclassical magic squares correspond to Birkhoff polytope compatibility. In general, we prove that polytope compatibility is in one-to-one correspondence with measurement compatibility, when the measurements have some elements in common and the post-processing of the joint measurement is restricted. Finally, we consider how much tuples operators with appropriate joint numerical range have to be scaled in the worst case in order to become polytope compatible and give both analytical sufficient conditions and numerical ones based on linear programming.
- Published
- 2023
31. Microcanonical windows on quantum operators
- Author
-
Pappalardi, Silvia, Foini, Laura, Kurchan, Jorge, Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut de Physique Théorique - UMR CNRS 3681 (IPHT), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Statistical Mechanics (cond-mat.stat-mech) ,FOS: Physical sciences ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Quantum Physics (quant-ph) ,Condensed Matter - Statistical Mechanics - Abstract
We discuss a construction of a microcanonical projection WOW of a quantum operator O, its spectrum, and the retrieval of canonical many-time correlations from it., 18 pages, 4 figures
- Published
- 2023
32. Temperature-dependent anisotropy in bond length of UO2 as a result of phonon-induced correlations
- Author
-
Desgranges, Lionel, Baldinozzi, Gianguido, Fischer, Henry, Lander, Gerard, CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Département d'Etudes des Combustibles (DEC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), European Commission - Joint Research Centre [Karlsruhe] (JRC), and The Max Planck Institute for Chemical Physics of Solids, Dresden
- Subjects
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,[CHIM.CRIS]Chemical Sciences/Cristallography ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
International audience; Previous experiments on cubic UO2 have suggested that the temperature dependences of the nearest-neighbour U–O and U–U distances are different. We have acquired total-scattering neutron diffraction patterns out to Q=23.5 Å−1 for 50 < T < 1023 K and produced via Fourier transform a pair-distribution function PDF(r). The PDF(r) shows quite clearly that r(U–O), defined by the maximum of the U–O peak in the PDF(r), does in fact decrease with increasing temperature, whereas r(U–U) follows the lattice expansion, as expected. We also observe that the r(U–O) contraction accelerates continuously above T ≈ 400 K, consistent with earlier experiments by others. Furthermore, by analysing the eigenvectors of the phonon modes, we show that the Δ5(TO1) phonon tends to separate the eight equivalent U–O distances into six shorter and two longer distances, where the longer pair contribute to a high-r tail observed in the U–O distance distribution becoming increasingly anisotropic at higher T. These results have significance for a wide range of materials in which heavy and light atoms are combined in a simple atomic structure [1].[1] L. Desgranges et al. J. Physics: Condensed Matter 35 10LT01 (2023)
- Published
- 2023
33. From Lindblad master equations to Langevin dynamics and back
- Author
-
Coppola, Michele, Daouma, Zoubair, Henkel, Malte, Laboratoire de Physique et Chimie Théoriques (LPCT), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), CFTC (CFTC), Universidade de Lisboa = University of Lisbon (ULISBOA), and ANR-22-CE30-0004,UNIOPEN,Universalite dans les systemes quantiques ouverts(2022)
- Subjects
[PHYS]Physics [physics] ,open quantum system ,Langevin equation ,harmonic oscillator ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Lindblad equation ,Wigner function ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,markovian dynamics - Abstract
A case study of the non-equilibrium dynamics of open quantum systems in the markovian approximation is presented for two dynamical models based on a single harmonic oscillator in an external field. Specified through distinct forms of ohmic damping, their quantum Langevin equations are derived from an identical set of physical criteria, namely the canonical commutator between position and momentum, the Kubo formula, the virial theorem and the quantum equilibrium variance. The associated Lindblad equations are derived but only one of them is completely positive. Transforming those into Fokker-Planck equations for the Wigner functions, both models are shown to evolve towards the same Gibbs state, for a vanishing external field. The phenomenological differences between the models are illustrated through their quantum relaxations and through the phase diagrammes derived from their re-interpretation as mean-field approximations of an interacting many-body system.; Une étude de cas de la dynamique hors équilibre de systèmes quantiques ouverts dans l'approximation markovienne est présentée pour deux modèles dynamiques basés sur un seul oscillateur harmonique, dans un champ externe. Spécifiées par des formes distinctes d'amortissement ohmique, leurs équations quantiques de Langevin sont dérivées à partir de critères physiques identiques, à savoir le commutateur canonique entre position et quantité de mouvement, la formule de Kubo, le théorème du viriel et la variance d'équilibre quantique. Les équations de Lindblad associées sont dérivées mais qu'une seule d'entre elles n'est complètement positive. En les transformant en équations de Fokker-Planck pour les fonctions de Wigner, les deux modèles évoluent vers le même état de Gibbs, pour un champ externe nul. Les différences phénoménologiques entre les modèles sont illustrées par leurs relaxations quantiques et par les diagrammes de phase dérivés de leur réinterprétation comme approximations de champ moyen d'un système à plusieurs corps en interaction.; Um estudo de caso da dinâmica fora do equilíbrio de sistemas quânticos abertos na aproximação markoviana é apresentado para dois modelos dinâmicos baseados em um único oscilador harmônico em um campo externo. Especificadas por meio de formas distintas de amortecimento ôhmico, suas equações quânticas de Langevin são derivadas de um conjunto idêntico de critérios físicos, ou seja, o comutador canônico entre posição e momento, a fórmula de Kubo, o teorema do virial e a variância do equilíbrio quântico. As equações de Lindblad associadas são derivadas, mas apenas uma delas é completamente positiva. Transformando-os em equações de Fokker-Planck para as funções de Wigner, ambos os modelos mostram evoluir para o mesmo estado de Gibbs, para um campo externo que desaparece. As diferenças fenomenológicas entre os modelos são ilustradas através de suas relaxações quânticas e através dos diagramas de fase derivados de sua reinterpretação como aproximações de campo médio de um sistema interativo de muitos corpos.
- Published
- 2023
34. Entanglement complexity of the Rokhsar-Kivelson-sign wavefunctions
- Author
-
Stefano Piemontese, Tommaso Roscilde, Alioscia Hamma, Laboratoire de Physique de l'ENS Lyon (Phys-ENS), and École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,family ,fluctuation ,scaling ,FOS: Physical sciences ,stability ,singularity ,Hamiltonian ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,statistics ,efficiency ,quantum information ,entropy ,entanglement ,Quantum Physics (quant-ph) ,performance ,information theory - Abstract
In this paper we study the transitions of entanglement complexity in an exemplary family of states - the Rokhsar-Kivelson-sign wavefunctions - whose degree of entanglement is controlled by a single parameter. This family of states is known to feature a transition between a phase exhibiting volume-law scaling of entanglement entropy and a phase with sub-extensive scaling of entanglement, reminiscent of the many-body-localization transition of disordered quantum Hamiltonians [Physical Review B 92, 214204 (2015)]. We study the singularities of the Rokhsar-Kivelson-sign wavefunctions and their entanglement complexity across the transition using several tools from quantum information theory: fidelity metric; entanglement spectrum statistics; entanglement entropy fluctuations; stabilizer R\'enyi Entropy; and the performance of a disentangling algorithm. Across the whole volume-law phase the states feature universal entanglement spectrum statistics. Yet a "super-universal" regime appears for small values of the control parameter in which all metrics become independent of the parameter itself; the entanglement entropy as well as the stabilizer R\'enyi entropy appear to approach their theoretical maximum; the entanglement fluctuations scale to zero as in output states of random universal circuits, and the disentangling algorithm has essentially null efficiency. All these indicators consistently reveal a complex pattern of entanglement. In the sub-volume-law phase, on the other hand, the entanglement spectrum statistics is no longer universal, entanglement fluctuations are larger and exhibiting a non-universal scaling; and the efficiency of the disentangling algorithm becomes finite. Our results, based on model wavefunctions, suggest that a similar combination of entanglement scaling properties and of entanglement complexity features may be found in high-energy Hamiltonian eigenstates., Comment: Journal version. Added 1 paragraph and 1 image
- Published
- 2023
35. Low power saturation of an ISB transition by a mid-IR quantum cascade laser
- Author
-
Jeannin, Mathieu, Cosentino, Eduardo, Pirotta, Stefano, Malerba, Mario, Biasiol, Giorgio, Manceau, Jean-Michel, Colombelli, Raffaele, Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratorio TASC (IOM CNR), Consiglio Nazionale delle Ricerche (CNR), ANR-19-CE24-0003,SOLID,Couplage fort lumière-matière pour les détecteurs à cascade quantique(2019), ANR-17-CE24-0016,IRENA,NanoAntennes pour Emetteurs InfraRouge(2017), and European Project: 737017,MIRBOSE
- Subjects
[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] - Abstract
We demonstrate that absorption saturation of a mid-infrared intersubband transition can be engineered to occur at moderate light intensities of the order of 10-20 kW.cm$^{-2}$ and at room temperature. The structure consists of an array of metal-semiconductor-metal patches hosting a judiciously designed 253~nm thick GaAs/AlGaAs semiconductor heterostructure. At low incident intensity the structure operates in the strong light-matter coupling regime and exhibits two absorption peaks at wavelengths close to 8.9 $\mu$m. Saturation appears as a transition to the weak coupling regime - and therefore to a single-peaked absorption - when increasing the incident power. Comparison with a coupled mode theory model explains the data and permits to infer the relevant system parameters. When the pump laser is tuned at the cavity frequency, the reflectivity decreases with increasing incident power. When instead the laser is tuned at the polariton frequencies, the reflectivity non-linearly increases with increasing incident power. At those wavelengths the system therefore mimics the behavior of a saturable absorption mirror (SESAM) in the mid-IR range, a technology that is currently missing.
- Published
- 2023
36. Optimal Hadamard gate count for Clifford+T synthesis of Pauli rotations sequences
- Author
-
Vandaele, Vivien, Martiel, Simon, Perdrix, Simon, Vuillot, Christophe, Designing the Future of Computational Models (MOCQUA), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Formal Methods (LORIA - FM), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Atos Bull, and ANR-22-PETQ-0006,NISQ2LSQ,From NISQ to LSQ: Bosonic and LDPC codes(2022)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,Quantum Physics (quant-ph) - Abstract
The Clifford$+T$ gate set is commonly used to perform universal quantum computation. In such setup the $T$ gate is typically much more expensive to implement in a fault-tolerant way than Clifford gates. To improve the feasibility of fault-tolerant quantum computing it is then crucial to minimize the number of $T$ gates. Many algorithms, yielding effective results, have been designed to address this problem. It has been demonstrated that performing a pre-processing step consisting of reducing the number of Hadamard gates in the circuit can help to exploit the full potential of these algorithms and thereby lead to a substantial $T$-count reduction. Moreover, minimizing the number of Hadamard gates also restrains the number of additional qubits and operations resulting from the gadgetization of Hadamard gates, a procedure used by some compilers to further reduce the number of $T$ gates. In this work we tackle the Hadamard gate reduction problem, and propose an algorithm for synthesizing a sequence of $\pi/4$ Pauli rotations with a minimal number of Hadamard gates. Based on this result, we present an algorithm which optimally minimizes the number of Hadamard gates lying between the first and the last $T$ gate of the circuit.
- Published
- 2023
37. A GKP qubit protected by dissipation in a high-impedance superconducting circuit driven by a microwave frequency comb
- Author
-
Sellem, Lev-Arcady, Sarlette, Alain, Leghtas, Zaki, Mirrahimi, Mazyar, Rouchon, Pierre, Campagne-Ibarcq, Philippe, MATHematics for MatERIALS (MATHERIALS), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC)-École des Ponts ParisTech (ENPC)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), QUANTum Information Circuits (QUANTIC), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Université Paris sciences et lettres (PSL), Centre Automatique et Systèmes (CAS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Laboratoire de physique de l'ENS - ENS Paris (LPENS), ANR-18-CE47-0005,HAMROQS,Modèles réduits haute précision pour systèmes quantiques ouverts(2018), ANR-20-CE47-0007,SYNCAMIL,Synthèse d'hamiltonians non locaux pour la protection d'information quantique(2020), ANR-22-PETQ-0006,NISQ2LSQ,From NISQ to LSQ: Bosonic and LDPC codes(2022), European Project: 884762,Q-Feedback, European Project: 101042304,HORIZON.1.1 - European Research Council (ERC),ERC-2021-STG - ERC STARTING GRANTS,DANCINGFOOL(2022), and European Project: 851740,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC),10.3030/851740,ECLIPSE(2020)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Optimization and Control (math.OC) ,FOS: Mathematics ,FOS: Physical sciences ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Quantum Physics (quant-ph) ,Mathematics - Optimization and Control - Abstract
We propose a novel approach to generate, protect and control GKP qubits. It employs a microwave frequency comb parametrically modulating a Josephson circuit to enforce a dissipative dynamics of a high impedance circuit mode, autonomously stabilizing the finite-energy GKP code. The encoded GKP qubit is robustly protected against all dominant decoherence channels plaguing superconducting circuits but quasi-particle poisoning. In particular, noise from ancillary modes leveraged for dissipation engineering does not propagate at the logical level. In a state-of-the-art experimental setup, we estimate that the encoded qubit lifetime could extend two orders of magnitude beyond the break-even point, with substantial margin for improvement through progress in fabrication and control electronics. Qubit initialization, readout and control via Clifford gates can be performed while maintaining the code stabilization, paving the way toward the assembly of GKP qubits in a fault-tolerant quantum computing architecture., 61 pages, 20 figures, 1 table
- Published
- 2023
38. Propagating quantum microwaves:towards applications in communication and sensing
- Author
-
Mateo Casariego, Emmanuel Zambrini Cruzeiro, Stefano Gherardini, Tasio Gonzalez-Raya, Rui André, Gonçalo Frazão, Giacomo Catto, Mikko Möttönen, Debopam Datta, Klaara Viisanen, Joonas Govenius, Mika Prunnila, Kimmo Tuominen, Maximilian Reichert, Michael Renger, Kirill G Fedorov, Frank Deppe, Harriet van der Vliet, A J Matthews, Yolanda Fernández, R Assouly, R Dassonneville, B Huard, Mikel Sanz, Yasser Omar, Universidade Lisboa, Instituto de Telecomunicações, Portuguese Quantum Institute (PQI), University of the Basque Country, Quantum Computing and Devices, Centre of Excellence in Quantum Technology, QTF, VTT Technical Research Centre of Finland, University of Helsinki, Bayerische Akademie der Wissenschaften, Oxford Instruments Group Plc, TTI Norte, École normale supérieure de Lyon, Department of Applied Physics, Aalto-yliopisto, Aalto University, Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), and European Commission
- Subjects
Quantum Physics ,Physics and Astronomy (miscellaneous) ,quantum microwaves ,superconductivity ,Materials Science (miscellaneous) ,quantum radar ,FOS: Physical sciences ,dark matter detection ,propagating quantum microwaves ,dark matter ,microwaves ,Atomic and Molecular Physics, and Optics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,quantum illumination ,direct detection ,quantum communication ,Electrical and Electronic Engineering ,quantum sensing ,Quantum Physics (quant-ph) - Abstract
Funding Information: The authors thank S Pirandola, and S Gasparinetti for useful discussions, and thank the support from Project QMiCS (820505) of the EU Flagship on Quantum Technologies. M C, E Z C, R A, G F, S G, and Y O thank the support from FCT—Fundação para a Ciência e a Tecnologia (Portugal), namely through Projects UIDB/50008/2020 and UIDB/04540/2020, as well as from Project TheBlinQC supported by the EU H2020 QuantERA ERA-NET Cofund in Quantum Technologies and by FCT (QuantERA/0001/2017). M C acknowledges support from the DP-PMI and FCT through scholarship PD/BD/135186/2017. G F acknowledges support from FCT through scholarship SFRH/BD/145572/2019. T G-R, M R and M S acknowledge financial support from Basque Government QUANTEK Project from ELKARTEK program (KK-2021/00070), Spanish Ramón y Cajal Grant RYC-2020-030503-I, as well as from OpenSuperQ (820363) of the EU Flagship on Quantum Technologies, and the EU FET-Open Projects Quromorphic (828826) and EPIQUS (899368), and IQM Quantum Computers under the Project ‘Generating quantum algorithms and quantum processor optimization’. M R acknowledges support from UPV/EHU PhD Grant PIF21/289. M M and G C acknowledge funding from the European Research Council under Consolidator Grant No. 681311 (QUESS), and from the Academy of Finland through its Centers of Excellence Program (Project Nos. 312300 and 336810) and QEMP Project (319579). M R, K G F, and F D acknowledge support by the German Research Foundation via Germany’s Excellence Strategy (EXC-2111-390814868), the Elite Network of Bavaria through the program ExQM, the EU Flagship Project QMiCS (Grant No. 820505), the German Federal Ministry of Education and Research via the Projects QUARATE (Grant No. 13N15380) and QuaMToMe (Grant No. 16KISQ036), and the State of Bavaria via the Munich Quantum Valley and the Hightech Agenda Bayern Plus. | openaire: EC/H2020/820505/EU//QMiCS | openaire: EC/H2020/820363/EU//OpenSuperQ | openaire: EC/H2020/681311/EU//QUESS The field of propagating quantum microwaves is a relatively new area of research that is receiving increased attention due to its promising technological applications, both in communication and sensing. While formally similar to quantum optics, some key elements required by the aim of having a controllable quantum microwave interface are still on an early stage of development. Here, we argue where and why a fully operative toolbox for propagating quantum microwaves will be needed, pointing to novel directions of research along the way: from microwave quantum key distribution to quantum radar, bath-system learning, or direct dark matter detection. The article therefore functions both as a review of the state-of-the-art, and as an illustration of the wide reach of applications the future of quantum microwaves will open.
- Published
- 2023
39. A telecom-wavelength quantum repeater node based on a trapped-ion processor
- Author
-
Krutyanskiy Victor, Canteri Marco, Meraner Martin, Bate James, Krcmarsky Vojtech, Schupp Josef, Sangouard Nicolas, Lanyon Benjamin Peter, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,Atomic Physics (physics.atom-ph) ,photon ,General Physics and Astronomy ,FOS: Physical sciences ,Quantum Network ,Cavity QED ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Quantum Optics ,Physics - Atomic Physics ,Entanglement ,Ion Traps ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,fibre ,emission ,network ,optical ,Quantum Information ,ion ,Quantum Communication ,Quantum Physics (quant-ph) - Abstract
A quantum repeater node is presented based on trapped ions that act as single photon emitters, quantum memories and an elementary quantum processor. The node’s ability to establish entanglement across two 25 km-long optical fibers independently, then to swap that entanglement efficiently to extend it over both fibers, is demonstrated. The resultant entanglement is established between telecom-wavelength photons at either end of the 50 km channel. Finally, the system improvements to allow for repeater-node chains to establish stored entanglement over 800 km at Hertz rates are calculated, revealing a near-term path to distributed networks of entangled sensors, atomic clocks and quantum processors., This work was financially supported by the START prize of the Austrian FWF project Y 849-N20, the Aus- trian FWF Standalone project QMAP with project num- ber P 34055, the Institute for Quantum Optics and Quan- tum Information (IQOQI) of the Austrian Academy Of Sciences (OeAW) and the European Union's Horizon 2020 research and innovation program under grant agree- ment No 820445 and project name 'Quantum Internet Alliance'. We acknowledge funding for V. Krutyanskiy by the Erwin Schr ̈odinger Center for Quantum Science & Technology (ESQ) Discovery Programme, for N.S. by the Commissariat `a l'Energie Atomique et aux Energies Alternatives (CEA), and for B.P.L. by the CIFAR Quan- tum Information Science Program of Canada.
- Published
- 2023
- Full Text
- View/download PDF
40. Bayesian inversion and the Tomita–Takesaki modular group
- Author
-
Giorgetti, Luca, Parzygnat, Arthur J., Ranallo, Alessio, Russo, Benjamin P., HEP, INSPIRE, Institut des Hautes Etudes Scientifiques (IHES), and IHES
- Subjects
Quantum Physics ,Mathematics::Operator Algebras ,General Mathematics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Mathematics - Operator Algebras ,FOS: Physical sciences ,[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph] ,Bayesian ,47A05, 47D03, 81P47 ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Settore MAT/05 ,FOS: Mathematics ,group ,modular ,Operator Algebras (math.OA) ,Quantum Physics (quant-ph) ,[PHYS.QPHY] Physics [physics]/Quantum Physics [quant-ph] - Abstract
We show that conditional expectations, optimal hypotheses, disintegrations and adjoints of unital completely positive maps are all instances of Bayesian inverses. We study the existence of the latter by means of the Tomita–Takesaki modular group and we provide extensions of a theorem of Takesaki as well as a theorem of Accardi and Cecchini to the setting of not necessarily faithful states on finite-dimensional $C^{\ast}$-algebras.
- Published
- 2023
41. Scalable spin squeezing in a dipolar Rydberg atom array
- Author
-
Bornet, Guillaume, Emperauger, Gabriel, Chen, Cheng, Ye, Bingtian, Block, Maxwell, Bintz, Marcus, Boyd, Jamie A., Barredo, Daniel, Comparin, Tommaso, Mezzacapo, Fabio, Roscilde, Tommaso, Lahaye, Thierry, Yao, Norman Y., Browaeys, Antoine, Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau Cedex, France, Laboratoire Charles Fabry (LCF), Institut d'Optique Graduate School (IOGS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Department of Physics, Harvard University, Cambridge, Massachusetts 02138 USA, Universite ́ Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau Cedex, France, Laboratoire de Physique de l'ENS Lyon (Phys-ENS), École normale supérieure de Lyon (ENS de Lyon)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), and Department of Physics, University of California, Berkeley, CA 94720, USA
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas] ,Quantum Gases (cond-mat.quant-gas) ,Atomic Physics (physics.atom-ph) ,FOS: Physical sciences ,Quantum Physics (quant-ph) ,Condensed Matter - Quantum Gases ,Physics - Atomic Physics - Abstract
The standard quantum limit bounds the precision of measurements that can be achieved by ensembles of uncorrelated particles. Fundamentally, this limit arises from the non-commuting nature of quantum mechanics, leading to the presence of fluctuations often referred to as quantum projection noise. Quantum metrology relies on the use of non-classical states of many-body systems in order to enhance the precision of measurements beyond the standard quantum limit. To do so, one can reshape the quantum projection noise -- a strategy known as squeezing. In the context of many-body spin systems, one typically utilizes all-to-all interactions (e.g. the one-axis twisting model) between the constituents to generate the structured entanglement characteristic of spin squeezing. Motivated by recent theoretical work, here we explore the prediction that short-range interactions -- and in particular, the two-dimensional dipolar XY model -- can also enable the realization of scalable spin squeezing. Working with a dipolar Rydberg quantum simulator of up to 100 atoms, we demonstrate that quench dynamics from a polarized initial state lead to spin squeezing that improves with increasing system size up to a maximum of -3.5 dB (prior to correcting for detection errors, or approximately -5 dB after correction). Finally, we present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by approximately 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions, we demonstrate the ability to extend the lifetime of the squeezed state by freezing its dynamics., 12 pages, 10 figures
- Published
- 2023
42. Homological Quantum Rotor Codes: Logical Qubits from Torsion
- Author
-
Vuillot, Christophe, Ciani, Alessandro, Terhal, Barbara M., Designing the Future of Computational Models (MOCQUA), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Formal Methods (LORIA - FM), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Forschungszentrum Jülich GmbH, Delft University of Technology (TU Delft), Faculty of Electrical Engineering, Mathematics and Computer Science [Delft] (EEMCS), Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – Cluster of Excellence Matter and Light for Quantum Computing (ML4Q) EXC2004/1 – 390534769, German Federal Ministry of Education and Research in the funding program 'quantum technologies – from basic research to market' (contract number 13N15585), QuTech NWO funding 2020-2024 – Part I 'Fundamental Research', project number 601.QT.001-1, financed by the Dutch Research Council (NWO), and ANR-22-PETQ-0006,NISQ2LSQ,From NISQ to LSQ: Bosonic and LDPC codes(2022)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,Quantum Physics (quant-ph) - Abstract
We formally define homological quantum rotor codes which use multiple quantum rotors to encode logical information. These codes generalize homological or CSS quantum codes for qubits or qudits, as well as linear oscillator codes which encode logical oscillators. Unlike for qubits or oscillators, homological quantum rotor codes allow one to encode both logical rotors and logical qudits, depending on the homology of the underlying chain complex. In particular, such a code based on the chain complex obtained from tessellating the real projective plane or a M\"{o}bius strip encodes a qubit. We discuss the distance scaling for such codes which can be more subtle than in the qubit case due to the concept of logical operator spreading by continuous stabilizer phase-shifts. We give constructions of homological quantum rotor codes based on 2D and 3D manifolds as well as products of chain complexes. Superconducting devices being composed of islands with integer Cooper pair charges could form a natural hardware platform for realizing these codes: we show that the $0$-$\pi$-qubit as well as Kitaev's current-mirror qubit -- also known as the M\"{o}bius strip qubit -- are indeed small examples of such codes and discuss possible extensions., Comment: 47 pages, 10 figures, 2 tables
- Published
- 2023
43. Quantum device
- Author
-
Morel, Adrien, Badets, Franck, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
- Subjects
[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,[SPI.TRON]Engineering Sciences [physics]/Electronics - Published
- 2023
44. Can a quantum mixmaster universe undergo a spontaneous inflationary phase?
- Author
-
Bergeron, Herve, Martin, Jaime de Cabo, Gazeau, Jean-Pierre, Malkiewicz, Przemyslaw, Institut des Sciences Moléculaires d'Orsay (ISMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
anisotropy, primordial ,Quantum Physics ,affine ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,coherent state ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,FOS: Physical sciences ,General Relativity and Quantum Cosmology (gr-qc) ,quantization ,inflation ,Quantum Physics (quant-ph) ,General Relativity and Quantum Cosmology - Abstract
We study a semi-classical model of the mixmaster universe. We first derive the quantum model and then introduce its semi-classical approximation. We employ a general integral quantization method that respects the symmetries of the model given by the affine and the Weyl-Heisenberg groups, and can produce a wide class of quantum models. The semi-classical approximation is based on the coherent states. The semi-classical dynamics is complex and can not be solved by analytical methods. We focus on a key qualitative feature of the dynamics, namely, we investigate whether the primordial anisotropic universe can undergo a spontaneous inflationary phase driven by the anisotropic energy combined with semi-classical corrections. The answer to this question provides a useful perspective on the inflationary paradigm as well as on alternative bouncing models., 15 pages, 6 figures
- Published
- 2023
45. Use and misuse of variances for quantum systems in pure or mixed states
- Author
-
Deville, Alain, Deville, Yannick, Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,Quantum Physics (quant-ph) - Abstract
International audience; As a consequence of the place ascribed to measurements in the postulates of quantum mechanics, if two differently prepared systems are described with the same density operator {̊h̊o̊}̊, they are said to be in the same quantum state. For more than fifty years, there has been a lack of consensus about this postulate. In a 2011 paper, considering variances of spin components, Fratini and Hayrapetyan tried to show that this postulate is unjustified. The aim of the present paper is to discuss major points in this 2011 article, and in their reply to a 2012 paper by Bodor and Diosi claiming that their analysis was irrelevant. Facing some ambiguities or inconsistencies in the 2011 paper and in the reply, we first try to guess their aim, then establish results useful in this context, and finally discuss the use or misuse of several concepts implied in this debate.
- Published
- 2023
46. Variational Benchmarks for Quantum Many-Body Problems
- Author
-
Wu, Dian, Rossi, Riccardo, Vicentini, Filippo, Astrakhantsev, Nikita, Becca, Federico, Cao, Xiaodong, Carrasquilla, Juan, Ferrari, Francesco, Georges, Antoine, Hibat-Allah, Mohamed, Imada, Masatoshi, Läuchli, Andreas M., Mazzola, Guglielmo, Mezzacapo, Antonio, Millis, Andrew, Moreno, Javier Robledo, Neupert, Titus, Nomura, Yusuke, Nys, Jannes, Parcollet, Olivier, Pohle, Rico, Romero, Imelda, Schmid, Michael, Silvester, J. Maxwell, Sorella, Sandro, Tocchio, Luca F., Wang, Lei, White, Steven R., Wietek, Alexander, Yang, Qi, Yang, Yiqi, Zhang, Shiwei, Carleo, Giuseppe, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Collège de France - Chaire Physique de la matière condensée (A. Georges), Collège de France (CdF (institution)), Institut de Physique Théorique - UMR CNRS 3681 (IPHT), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quantum Physics ,Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,[INFO]Computer Science [cs] ,Computational Physics (physics.comp-ph) ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Quantum Physics (quant-ph) ,Physics - Computational Physics - Abstract
The continued development of novel many-body approaches to ground-state problems in physics and chemistry calls for a consistent way to assess its overall progress. Here we introduce a metric of variational accuracy, the V-score, obtained from the variational energy and its variance. We provide the most extensive curated dataset of variational calculations of many-body quantum systems to date, identifying cases where state-of-the-art numerical approaches show limited accuracy, and novel algorithms or computational platforms, such as quantum computing, could provide improved accuracy. The V-score can be used as a metric to assess the progress of quantum variational methods towards quantum advantage for ground-state problems, especially in regimes where classical verifiability is impossible., 25 pages, 5 figures
- Published
- 2023
47. Electrical manipulation of a single electron spin in CMOS with micromagnet and spin-valley coupling
- Author
-
Klemt, Bernhard, El-Homsy, Victor, Nurizzo, Martin, Hamonic, Pierre, Martinez, Biel, Paz, Bruna Cardoso, Spence, Cameron, Dartiailh, Matthieu, Jadot, Baptiste, Chanrion, Emmanuel, Thiney, Vivien, Lethiecq, Renan, Bertrand, Benoit, Niebojewski, Heimanu, Bäuerle, Christopher, Vinet, Maud, Niquet, Yann-Michel, Meunier, Tristan, Urdampilleta, Matias, Circuits électroniques quantiques Alpes (NEEL - QuantECA), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), and Direction de Recherche Technologique (CEA) (DRT (CEA))
- Subjects
noise ,Condensed Matter - Mesoscale and Nanoscale Physics ,spin: orbit ,FOS: Physical sciences ,fabrication ,semiconductor ,electric field ,electron: spin ,decoupling ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,semiconductor detector ,superconducting circuit ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,qubit - Abstract
For semiconductor spin qubits, complementary-metal-oxide-semiconductor (CMOS) technology is the ideal candidate for reliable and scalable fabrication. Making the direct leap from academic fabrication to qubits fabricated fully by industrial CMOS standards is difficult without intermediate solutions. With a flexible back-end-of-line (BEOL) new functionalities such as micromagnets or superconducting circuits can be added in a post-CMOS process to study the physics of these devices or achieve proof of concepts. Once the process is established it can be incorporated in the foundry-compatible process flow. Here, we study a single electron spin qubit in a CMOS device with a micromagnet integrated in the flexible BEOL. We exploit the synthetic spin orbit coupling (SOC) to control the qubit via electric field and we investigate the spin-valley physics in the presence of SOC where we show an enhancement of the Rabi frequency at the spin-valley hotspot. Finally, we probe the high frequency noise in the system using dynamical decoupling pulse sequences and demonstrate that charge noise dominates the qubit decoherence in this range., 11 pages, 10 figures
- Published
- 2023
48. On new PageRank computation methods using quantum computing
- Author
-
Théodore Chapuis-Chkaiban, Zeno Toffano, Benoît Valiron, CentraleSupélec, Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Méthodes Formelles (LMF), and Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)
- Subjects
PageRank ,Graph Fourier transform ,Information theory ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,Modeling and Simulation ,Signal Processing ,Spectral graph theory ,Statistical and Nonlinear Physics ,Quantum computing ,Electrical and Electronic Engineering ,Theoretical Computer Science ,Electronic, Optical and Magnetic Materials - Abstract
International audience; In this paper we propose several new quantum computation algorithms as an original contribution to the domain of PageRank algorithm theory, Spectral Graph Theory and Quantum Signal Processing. We first propose an application to PageRank of the HHL quantum algorithm for linear equation systems. We then introduce one of the first Quantum-Based Algorithms to perform a directed Graph Fourier Transform with a low gate complexity. After proposing a generalized PageRank formulation, based on ideas stemming from Spectral Graph Theory, we show how our quantum directed graph Fourier Transform can be applied to compute our generalized version of the PageRank.
- Published
- 2023
49. Simple Complete Equational Theories for Quantum Circuits with Ancillae or Partial Trace
- Author
-
Clément, Alexandre, Delorme, Noé, Perdrix, Simon, Vilmart, Renaud, Designing the Future of Computational Models (MOCQUA), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Formal Methods (LORIA - FM), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Quantum Computation Structures (QuaCS), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Méthodes Formelles (LMF), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Laboratoire Méthodes Formelles (LMF), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), European projects NEASQC and HPCQS, ANR-22-PETQ-0007,EPiQ,Etude de la pile quantique : Algorithmes, modèles de calcul et simulation pour l'informatique quantique(2022), ANR-17-CE25-0009,SoftQPRO,Solutions logicielles pour l'optimisation des programmes et ressources quantiques(2017), and European Project: 101018180 ,HPCQS(2021)
- Subjects
FOS: Computer and information sciences ,Completeness ,Quantum Physics ,Computer Science - Logic in Computer Science ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,FOS: Physical sciences ,[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] ,Quantum Circuits ,Quantum Physics (quant-ph) ,Logic in Computer Science (cs.LO) ,Graphical Language - Abstract
Although quantum circuits have been ubiquitous for decades in quantum computing, the first complete equational theory for quantum circuits has only recently been introduced. Completeness guarantees that any true equation on quantum circuits can be derived from the equational theory. Our contribution is twofold: (i) We simplify this equational theory by proving that several rules can be derived from the remaining ones. In particular, two out of the three most intricate rules are removed, the third one being slightly simplified. (ii) We extend the complete equational theory to quantum circuits with ancillae or qubit discarding, to represent respectively quantum computations using an additional workspace, and hybrid quantum computations. We show that the remaining intricate rule can be greatly simplified in these more expressive settings. The development of simple and complete equational theories for expressive quantum circuit models opens new avenues for reasoning about quantum circuits. It provides strong formal foundations for various compiling tasks such as circuit optimisation, hardware constraint satisfaction and verification.
- Published
- 2023
50. Computing 256-bit Elliptic Curve Logarithm in 9 Hours with 126133 Cat Qubits
- Author
-
Gouzien, Élie, Ruiz, Diego, Régent, Francois-Marie Le, Guillaud, Jérémie, Sangouard, Nicolas, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
teleportation ,Quantum Physics ,noise ,gate, Toffoli ,photon ,FOS: Physical sciences ,costs ,suppression ,buildings ,off-line ,[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph] ,Quantum Physics (quant-ph) ,computer, quantum ,qubit ,performance ,two-photon ,lattice - Abstract
Cat qubits provide appealing building blocks for quantum computing. They exhibit a tunable noise bias yielding an exponential suppression of bit-flips with the average photon number and a protection against the remaining phase errors can be ensured by a simple repetition code. We here quantify the cost of a repetition code and provide a valuable guidance for the choice of a large scale architecture using cat qubits by realizing a performance analysis based on the computation of discrete logarithms on an elliptic curve with Shor's algorithm. By focusing on a 2D grid of cat qubits with neighboring connectivity, we propose to implement two-qubit gates via lattice surgery and Toffoli gates with off-line fault-tolerant preparation of magic states through projective measurements and subsequent gate teleportations. All-to-all connectivity between logical qubits is ensured by routing qubits. Assuming a ratio between single-photon and two-photon losses of $10^{-5}$ and a cycle time of 500 nanoseconds, we show concretely that such an architecture can compute $256$-bit elliptic curve logarithm in $9$ hours with 126133 cat qubits. We give the details of the realization of Shor's algorithm so that the proposed performance analysis can be easily reused to guide the choice of architecture for others platforms., 4+34 pages, 32 figures, 5 tables
- Published
- 2023
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.