Charles Tizon, Romain Benoit, Marie Rossignol, Bernard Cadiou, Didier Fontenille, David Roiz, Reda Tounsi, Saïd C. Boubidi, Marc Raselli, Christophe Lagneau, Paul Reiter, Fabrice Chandre, EID Méditerranée (EID Méditerranée), Etablissement public administratif, Institut Pasteur d'Algérie, Réseau International des Instituts Pasteur (RIIP), Vector Control Group (MIVEGEC-VCG), Evolution des Systèmes Vectoriels (ESV), Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle (MIVEGEC), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), EID Méditerranée, Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Institut Pasteur du Cambodge, Insectes et Maladies Infectieuses, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), The research was funded by the European Commission under the 7th Framework, Grant Agreement Number: 282589, We would like to thank Thierry Baldet of IDRC/CRDI–Ottawa, Canada and Annelies Wilder-Smith of University of Umea, Umea, Sweden for useful discussions and advices for the work. Our thanks also to Xavier Allen of CIRAD, UMR15 CMAEE, INRA, Montpellier, France for providing blood for the mosquito rearing and Arnaud Cannet and Pascal Delaunay of Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, C3 M, Université de Nice-Sophia Antipolis for their technical help and all the staff of EID Méditerranée, Montpellier, France for their help in field trials., European Project: 282589,EC:FP7:HEALTH,FP7-HEALTH-2011-single-stage,DENGUETOOLS(2011), and Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
Background Ultra-low volume (ULV) insecticidal aerosols dispensed from vehicle-mounted cold-foggers are widely considered the method of choice for control of Aedes aegypti and Ae. albopictus during outbreaks of dengue and chikungunya and, more recently, Zika. Nevertheless, their effectiveness has been poorly studied, particularly in Europe. Nearly all published studies of ULV efficacy are bio-assays based on the mortality of caged mosquitoes. In our study we preferred to monitor the direct impact of treatments on the wild mosquito populations. This study was undertaken to evaluate the efficiency of the two widely used space spraying methods to control Ae. albopictus and Ae. aegypti. Methods We determined the susceptibility of local Ae. albopictus to deltamethrin by two methods: topical application and the “WHO Tube Test”. We used ovitraps baited with hay infusion and adult traps (B-G Sentinel) baited with a patented attractant to monitor the mosquitoes in four residential areas in Nice, southern France. The impact of deltamethrin applied from vehicle-mounted ULV fogging-machines was assessed by comparing trap results in treated vs untreated areas for 5 days before and 5 days after treatment. Four trials were conducted at the maximum permitted application rate (1 g.ha-1). We also made two small-scale tests of the impact of the same insecticide dispensed from a hand-held thermal fogger. Results Susceptibility to the insecticide was high but there was no discernable change in the oviposition rate or the catch of adult female mosquitoes, nor was there any change in the parous rate. In contrast, hand-held thermal foggers were highly effective, with more than 90% reduction of both laid eggs and females. Conclusions We believe that direct monitoring of the wild mosquito populations gives a realistic assessment of the impact of treatments and suggest that the lack of efficacy is due to lack of interaction between the target mosquitoes and the ULV aerosol. We discuss the factors that influence the effectiveness of both methods of spraying in the context of epidemic situations. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1881-y) contains supplementary material, which is available to authorized users.