1. Precision targeting of the vagal anti-inflammatory pathway attenuates the systemic inflammatory response to burn injury
- Author
-
Costantini, Todd W, Coimbra, Raul, Weaver, Jessica L, and Eliceiri, Brian P
- Subjects
Biomedical and Clinical Sciences ,Clinical Sciences ,Lung ,Digestive Diseases ,Neurosciences ,Physical Injury - Accidents and Adverse Effects ,5.1 Pharmaceuticals ,Development of treatments and therapeutic interventions ,Oral and gastrointestinal ,Animals ,Burns ,Dextrans ,Disease Models ,Animal ,Fluorescein-5-isothiocyanate ,Intestinal Mucosa ,Lung Injury ,Male ,Mice ,Mice ,Inbred C57BL ,Neuroimmunomodulation ,Permeability ,Systemic Inflammatory Response Syndrome ,Vagus Nerve ,alpha7 Nicotinic Acetylcholine Receptor ,Vagus nerve ,cholinergic anti-inflammatory ,lung ,alpha 7 nicotinic acetylcholine ,intestine ,Clinical sciences ,Nursing - Abstract
BackgroundThe systemic inflammatory response (SIRS) drives late morbidity and mortality after injury. The α7 nicotinic acetylcholine receptor (α7nAchR) expressed on immune cells regulates the vagal anti-inflammatory pathway that prevents an overwhelming SIRS response to injury. Nonspecific pharmacologic stimulation of the vagus nerve has been evaluated as a potential therapeutic to limit SIRS. Unfortunately, the results of clinical trials have been underwhelming. We hypothesized that directly targeting the α7nAchR would more precisely stimulate the vagal anti-inflammatory pathway on immune cells and decrease gut and lung injury after severe burn.MethodsC57BL/6 mice underwent 30% total body surface area steam burn. Mice were treated with an intraperitoneal injection of a selective agonist of the α7nAchR (AR-R17779) at 30 minutes postburn. Intestinal permeability to 4 kDa FITC-dextran was measured at multiple time points postinjury. Lung vascular permeability was measured 6 hours after burn injury. Serial behavioral assessments were performed to quantify activity levels.ResultsIntestinal permeability peaked at 6 hours postburn. AR-R17779 decreased burn-induced intestinal permeability in a dose-dependent fashion (p < 0.001). There was no difference in gut permeability to 4 kDa FITC-dextran between sham and burn-injured animals treated with 5 mg/kg of AR-R17779. While burn injury increased lung permeability 10-fold, AR-R17779 prevented burn-induced lung permeability with no difference compared with sham (p < 0.01). Postinjury activity levels were significantly improved in burned animals treated with AR-R17779.ConclusionDirectly stimulating the α7nAchR prevents burn-induced gut and lung injury. Directly targeting the α7nAChR that mediates the cholinergic anti-inflammatory response may be an improved strategy compared with nonspecific vagal agonists.
- Published
- 2022