1. Network verification via routing table queries
- Author
-
Guido Proietti, Evangelos Bampas, Guido Drovandi, Luciano Gualà, Davide Bilò, Ralf Klasing, Algorithmics for computationally intensive applications over wide scale distributed platforms (CEPAGE), Université Sciences et Technologies - Bordeaux 1-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), University of Sassari, Consiglio Nazionale delle Ricerche [Roma] (CNR), Department of Physics, University of Rome Tor Vergata, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Dipartimento di Informatica [Italy] (DI), Università degli Studi dell'Aquila (UNIVAQ), Istituto di Analisi dei Sistemi ed Informatica 'Antonio Ruberti' (IASI), Modélisation, Information et Systèmes - UR UPJV 4290 (MIS), Université de Picardie Jules Verne (UPJV), Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica [L'Aquila] (DISIM), Istituto di Analisi dei Sistemi ed Informatica 'Antonio Ruberti' [Roma] (IASI), ANR-11-BS02-0014,DISPLEXITY,Calculabilité et complexité en distribué(2011), Université Sciences et Technologies - Bordeaux 1 (UB)-Inria Bordeaux - Sud-Ouest, Università degli Studi di Sassari = University of Sassari [Sassari] (UNISS), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Università degli Studi di Roma Tor Vergata [Roma], Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi dell'Aquila = University of L'Aquila (UNIVAQ), and Department of Information Engineering, Computer Science and Mathematics = Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica [L'Aquila] (DISIM)
- Subjects
Theoretical computer science ,Optimization problem ,Graph/network topology ,General Computer Science ,Computational complexity theory ,Computer Networks and Communications ,Computer science ,Routing table ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,Vertex cover ,0102 computer and information sciences ,02 engineering and technology ,Network topology ,01 natural sciences ,Graph verification ,Theoretical Computer Science ,0202 electrical engineering, electronic engineering, information engineering ,ComputingMilieux_MISCELLANEOUS ,Computer Science::Databases ,Settore INF/01 - Informatica ,Applied Mathematics ,Approximation algorithm ,020206 networking & telecommunications ,Approximation algorithms ,Computational complexity ,Computational Theory and Mathematics ,010201 computation theory & mathematics ,Network verification ,Shortest path problem ,Graph (abstract data type) ,[INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC] - Abstract
International audience; We address the problem of verifying the accuracy of a map of a network by making as few measurements as possible on its nodes. This task can be formalized as an optimization problem that, given a graph G = (V,E), and a query model specifying the information returned by a query at a node, asks for finding a minimum-size subset of nodes of G to be queried so as to univocally identify G. This problem has been faced w.r.t. a couple of query models assuming that a node had some global knowledge about the network. Here, we propose a new query model based on the local knowledge a node instead usually has. Quite naturally, we assume that a query at a given node returns the associated routing table, i.e., a set of entries which provides, for each destination node, a corresponding (set of) first-hop node(s) along an underlying shortest path. First, we show that any network of n nodes needs Ω(loglogn) queries to be verified. Then, we prove that there is no o(logn)-approximation algorithm for the problem, unless \sf P=\sf NP , even for networks of diameter 2. On the positive side, we provide an O(logn)-approximation algorithm to verify a network of diameter 2, and we give exact polynomial-time algorithms for paths, trees, and cycles of even length.
- Published
- 2015