50,809 results on '"Vargas P"'
Search Results
2. Analytical and EZmock covariance validation for the DESI 2024 results
- Author
-
Forero-Sánchez, Daniel, Rashkovetskyi, Michael, Alves, Otávio, de Mattia, Arnaud, Nadathur, Seshadri, Zarrouk, Pauline, Gil-Marín, Héctor, Ding, Zhejie, Yu, Jiaxi, Andrade, Uendert, Chen, Xinyi, Garcia-Quintero, Cristhian, Mena-Fernández, Juan, Ahlen, Steven, Bianchi, Davide, Brooks, David, Burtin, Etienne, Chaussidon, Edmond, Claybaugh, Todd, Cole, Shaun, de la Macorra, Axel, Vargas, Miguel Enriquez, Gaztañaga, Enrique, Gutierrez, Gaston, Honscheid, Klaus, Howlett, Cullan, Kisner, Theodore, Landriau, Martin, Guillou, Laurent Le, Levi, Michael, Miquel, Ramon, Moustakas, John, Palanque-Delabrouille, Nathalie, Percival, Will, Pérez-Ràfols, Ignasi, Ross, Ashley J., Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Schubnell, Michael, Seo, Hee-Jong, Sprayberry, David, Tarlé, Gregory, Magana, Mariana Vargas, Weaver, Benjamin Alan, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The estimation of uncertainties in cosmological parameters is an important challenge in Large-Scale-Structure (LSS) analyses. For standard analyses such as Baryon Acoustic Oscillations (BAO) and Full Shape, two approaches are usually considered. First: analytical estimates of the covariance matrix use Gaussian approximations and (nonlinear) clustering measurements to estimate the matrix, which allows a relatively fast and computationally cheap way to generate matrices that adapt to an arbitrary clustering measurement. On the other hand, sample covariances are an empirical estimate of the matrix based on en ensemble of clustering measurements from fast and approximate simulations. While more computationally expensive due to the large amount of simulations and volume required, these allow us to take into account systematics that are impossible to model analytically. In this work we compare these two approaches in order to enable DESI's key analyses. We find that the configuration space analytical estimate performs satisfactorily in BAO analyses and its flexibility in terms of input clustering makes it the fiducial choice for DESI's 2024 BAO analysis. On the contrary, the analytical computation of the covariance matrix in Fourier space does not reproduce the expected measurements in terms of Full Shape analyses, which motivates the use of a corrected mock covariance for DESI's Full Shape analysis., Comment: 23 pages, 5 figures 7 tables, submitted to JCAP
- Published
- 2024
3. Intellectual Capital Measurement in Higher Education Institutions Context from the Professors Perspective
- Author
-
Yuranis Vargas-Atencio, Julio Cesar Acosta-Prado, and Arnold Alejandro Tafur-Mendoza
- Abstract
Intellectual capital has aroused growing interest in higher education; however, one area for improvement in its study is how to measure it adequately. Therefore, it is necessary to have instruments based on current models of intellectual capital. This study aims to design and validate an intellectual capital measurement scale in accredited higher education institutions (HEIs) from the perspective of professors. The study was instrumental because a measurement scale was developed. The sample consisted of 341 professors from six accredited HEIs on the Colombian Caribbean Coast. The statistical analysis consisted of three stages: item analysis, collection of validity evidence based on the internal structure and the relationship with other variables, and reliability analysis using the internal consistency method. The scale's internal structure corroborated intellectual capital composition based on human, structural, and relational components. Regarding convergent evidence, all variables possess this source of validity evidence. Reliability levels were also good. Previously, an instrument has yet to be developed those measures intellectual capital in HEIs from the perspective of professors. This study provides a scale that focuses on the characteristics of this stakeholder and is based on an innovative model of intellectual capital composed of human, structural, and relational capital. The theoretical contribution of the study lies in developing a test based on two current models of intellectual capital: the Intellectus model and the Balanced Scorecard model. It also contributes to practice by providing a tool for measuring intellectual capital that allows its adequate management, improvement, and decision-making within higher education.
- Published
- 2024
4. Demonstrating dynamic surface codes
- Author
-
Eickbusch, Alec, McEwen, Matt, Sivak, Volodymyr, Bourassa, Alexandre, Atalaya, Juan, Claes, Jahan, Kafri, Dvir, Gidney, Craig, Warren, Christopher W., Gross, Jonathan, Opremcak, Alex, Miao, Nicholas Zobrist Kevin C., Roberts, Gabrielle, Satzinger, Kevin J., Bengtsson, Andreas, Neeley, Matthew, Livingston, William P., Greene, Alex, Rajeev, Acharya, Beni, Laleh Aghababaie, Aigeldinger, Georg, Alcaraz, Ross, Andersen, Trond I., Ansmann, Markus, Frank, Arute, Arya, Kunal, Asfaw, Abraham, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bilmes, Alexander, Jenna, Bovaird, Bowers, Dylan, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Tim, Burger, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chiaro, Ben, Chih, Liang-Ying, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Alexander, Crook, L., Curtin, Ben, Das, Sayan, Barba, Alexander Del Toro, Demura, Sean, De Lorenzo, Laura, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya K., Dunsworth, Andrew, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gonzalo, Garcia, Gasca, Robert, Genois, Élie, Giang, William, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Dietrich, Graumann, Ha, Tan, Habegger, Steve, Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Higgott, Oscar, Hiltermann, Reno, Hilton, Jeremy, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Jeffrey, Evan, Jiang, Zhang, Jin, Xiaoxuan, Jones, Cody, Joshi, Chaitali, Juhas, Pavol, Kabel, Andreas, Kang, Hui, Amir, Karamlou, H., Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Tiano, Lange-Dei, Langley, Brandon W., Lau, Kim-Ming, Ledford, Justin, Lee, Kenny, Lester, Brian J., Guevel, Loïck Le, Wing, Li, Yan, Lill, Alexander T., Locharla, Aditya, Lucero, Erik, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., Meeks, Seneca, Anthony, Megrant, Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Movassagh, Ramis, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Oas, Logan, Orosco, Raymond, Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Rhodes, David M., Rosenberg, Eliott, Rossi, Elizabeth, Sankaragomathi, Kannan, Schurkus, Henry F., Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Tomita, Eifu, Torres, Alfredo, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Sergey, Vdovichev, Vidal, Guifre, Heidweiller, Catherine Vollgraff, Waltman, Steven, Waltz, Jonathan, Wang, Shannon X., Ware, Brayden, Weidel, Travis, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Woodson, Maddy, Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Yaxing, Zhang, Zhu, Ningfeng, Boixo, Sergio, Kelly, Julian, Smelyanskiy, Vadim, Neven, Hartmut, Bacon, Dave, Chen, Zijun, Klimov, Paul V., Roushan, Pedram, Neill, Charles, Chen, Yu, and Morvan, Alexis
- Subjects
Quantum Physics - Abstract
A remarkable characteristic of quantum computing is the potential for reliable computation despite faulty qubits. This can be achieved through quantum error correction, which is typically implemented by repeatedly applying static syndrome checks, permitting correction of logical information. Recently, the development of time-dynamic approaches to error correction has uncovered new codes and new code implementations. In this work, we experimentally demonstrate three time-dynamic implementations of the surface code, each offering a unique solution to hardware design challenges and introducing flexibility in surface code realization. First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three. Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors. Finally, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead. We measure the error suppression factor when scaling from distance-3 to distance-5 codes of $\Lambda_{35,\text{hex}} = 2.15(2)$, $\Lambda_{35,\text{walk}} = 1.69(6)$, and $\Lambda_{35,\text{iSWAP}} = 1.56(2)$, achieving state-of-the-art error suppression for each. With detailed error budgeting, we explore their performance trade-offs and implications for hardware design. This work demonstrates that dynamic circuit approaches satisfy the demands for fault-tolerance and opens new alternative avenues for scalable hardware design., Comment: 11 pages, 5 figures, Supplementary Information
- Published
- 2024
5. Scaling and logic in the color code on a superconducting quantum processor
- Author
-
Lacroix, Nathan, Bourassa, Alexandre, Heras, Francisco J. H., Zhang, Lei M., Bausch, Johannes, Senior, Andrew W., Edlich, Thomas, Shutty, Noah, Sivak, Volodymyr, Bengtsson, Andreas, McEwen, Matt, Higgott, Oscar, Kafri, Dvir, Claes, Jahan, Morvan, Alexis, Chen, Zijun, Zalcman, Adam, Madhuk, Sid, Acharya, Rajeev, Beni, Laleh Aghababaie, Aigeldinger, Georg, Alcaraz, Ross, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bilmes, Alexander, Blackwell, Sam, Bovaird, Jenna, Bowers, Dylan, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chiaro, Ben, Chih, Liang-Ying, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Curtin, Ben, Das, Sayan, Demura, Sean, De Lorenzo, Laura, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Garcia, Gonzalo, Gasca, Robert, Genois, Élie, Giang, William, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Ha, Tan, Habegger, Steve, Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Hiltermann, Reno, Hilton, Jeremy, Hong, Sabrina, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Jeffrey, Evan, Jiang, Zhang, Jin, Xiaoxuan, Joshi, Chaitali, Juhas, Pavol, Kabel, Andreas, Kang, Hui, Karamlou, Amir H., Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Klimov, Paul V., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Ledford, Justin, Lee, Kenny, Lester, Brian J., Guevel, Loïck Le, Li, Wing Yan, Li, Yin, Lill, Alexander T., Livingston, William P., Locharla, Aditya, Lucero, Erik, Lundahl, Daniel, Lunt, Aaron, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., Meeks, Seneca, Megrant, Anthony, Miao, Kevin C., Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Movassagh, Ramis, Neill, Charles, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Y., Oas, Logan, Oliver, William D., Orosco, Raymond, Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Resnick, Rachel, Rhodes, David M., Roberts, Gabrielle, Rosenberg, Eliott, Rosenfeld, Emma, Rossi, Elizabeth, Roushan, Pedram, Sankaragomathi, Kannan, Schurkus, Henry F., Shearn, Michael J., Shorter, Aaron, Shvarts, Vladimir, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Tomita, Eifu, Torres, Alfredo, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Vdovichev, Sergey, Vidal, Guifre, Heidweiller, Catherine Vollgraff, Waltman, Steven, Waltz, Jonathan, Wang, Shannon X., Ware, Brayden, Weidel, Travis, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Woodson, Maddy, Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zhang, Yaxing, Zhu, Ningfeng, Zobrist, Nicholas, Neven, Hartmut, Kohli, Pushmeet, Davies, Alex, Boixo, Sergio, Kelly, Julian, Jones, Cody, Gidney, Craig, and Satzinger, Kevin J.
- Subjects
Quantum Physics - Abstract
Quantum error correction is essential for bridging the gap between the error rates of physical devices and the extremely low logical error rates required for quantum algorithms. Recent error-correction demonstrations on superconducting processors have focused primarily on the surface code, which offers a high error threshold but poses limitations for logical operations. In contrast, the color code enables much more efficient logic, although it requires more complex stabilizer measurements and decoding techniques. Measuring these stabilizers in planar architectures such as superconducting qubits is challenging, and so far, realizations of color codes have not addressed performance scaling with code size on any platform. Here, we present a comprehensive demonstration of the color code on a superconducting processor, achieving logical error suppression and performing logical operations. Scaling the code distance from three to five suppresses logical errors by a factor of $\Lambda_{3/5}$ = 1.56(4). Simulations indicate this performance is below the threshold of the color code, and furthermore that the color code may be more efficient than the surface code with modest device improvements. Using logical randomized benchmarking, we find that transversal Clifford gates add an error of only 0.0027(3), which is substantially less than the error of an idling error correction cycle. We inject magic states, a key resource for universal computation, achieving fidelities exceeding 99% with post-selection (retaining about 75% of the data). Finally, we successfully teleport logical states between distance-three color codes using lattice surgery, with teleported state fidelities between 86.5(1)% and 90.7(1)%. This work establishes the color code as a compelling research direction to realize fault-tolerant quantum computation on superconducting processors in the near future.
- Published
- 2024
6. Outcome-guided spike-and-slab Lasso Biclustering: A Novel Approach for Enhancing Biclustering Techniques for Gene Expression Analysis
- Author
-
Vargas-Mieles, Luis A., Kirk, Paul D. W., and Wallace, Chris
- Subjects
Statistics - Applications ,62P10 ,G.3 - Abstract
Biclustering has gained interest in gene expression data analysis due to its ability to identify groups of samples that exhibit similar behaviour in specific subsets of genes (or vice versa), in contrast to traditional clustering methods that classify samples based on all genes. Despite advances, biclustering remains a challenging problem, even with cutting-edge methodologies. This paper introduces an extension of the recently proposed Spike-and-Slab Lasso Biclustering (SSLB) algorithm, termed Outcome-Guided SSLB (OG-SSLB), aimed at enhancing the identification of biclusters in gene expression analysis. Our proposed approach integrates disease outcomes into the biclustering framework through Bayesian profile regression. By leveraging additional clinical information, OG-SSLB improves the interpretability and relevance of the resulting biclusters. Comprehensive simulations and numerical experiments demonstrate that OG-SSLB achieves superior performance, with improved accuracy in estimating the number of clusters and higher consensus scores compared to the original SSLB method. Furthermore, OG-SSLB effectively identifies meaningful patterns and associations between gene expression profiles and disease states. These promising results demonstrate the effectiveness of OG-SSLB in advancing biclustering techniques, providing a powerful tool for uncovering biologically relevant insights. The OGSSLB software can be found as an R/C++ package at https://github.com/luisvargasmieles/OGSSLB .
- Published
- 2024
7. Branching laws and a duality principle, Part I
- Author
-
Ørsted, Bent and Vargas, Jorge A.
- Subjects
Mathematics - Representation Theory ,Primary 22E46, Secondary 17B10 - Abstract
For a semisimple Lie group $G$ satisfying the equal rank condition, the most basic family of unitary irreducible representations is the Discrete Series found by Harish-Chandra. In this paper, we continue our study of the branching laws for Discrete Series when restricted to a subgroup $H$ of the same type by use of integral and differential operators in combination with our previous duality principle. Many results are presented in generality, others are shown in detail for Holomorphic Discrete Series., Comment: Comments are welcome
- Published
- 2024
8. A note on Diagonal sequences of integer partitions
- Author
-
Neubauer, Michael and Vargas, Harmony
- Subjects
Mathematics - Combinatorics - Abstract
Let \(\mathcal{P}(n)\) be the set of partitions of the positive integer \(n\). For \(\alpha=(\alpha_1,...,\alpha_t) \in \mathcal{P}(n)\) define the diagonal sequence \(\delta(\alpha)=(d_k(\alpha))_{k \geq 1}\) via \( d_k(\alpha) = \big\lvert \{ i \, \rvert \, 1 \leq i \leq k \mbox{ and } \alpha_i + i- 1\geq k \} \big\rvert.\) We show that the set of all partitions in \(\mathcal{P}(n)\) with the same diagonal sequence is a partially ordered set under majorization with unique maximal and minimal elements and we give an explicit formula for the number of partitions with the same diagonal sequence.
- Published
- 2024
9. Constraining the phase shift of relativistic species in DESI BAOs
- Author
-
Whitford, Abbé M., Rivera-Morales, Hugo, Howlett, Cullan, Vargas-Magaña, Mariana, Fromenteau, Sébastien, Davis, Tamara M., Pérez-Fernández, Alejandro, de Mattia, Arnaud, Ahlen, Steven, Bianchi, Davide, Brooks, David, Burtin, Etienne, Claybaugh, Todd, de la Macorra, Axel, Doel, Peter, Ferraro, Simone, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Juneau, Stephanie, Kehoe, Robert, Kirkby, David, Kisner, Theodore, Koposov, Sergey, Landriau, Martin, Guillou, Laurent Le, Meisner, Aaron, Miquel, Ramon, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schubnell, Michael, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin Alan, Zarrouk, Pauline, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In the early Universe, neutrinos decouple quickly from the primordial plasma and propagate without further interactions. The impact of free-streaming neutrinos is to create a temporal shift in the gravitational potential that impacts the acoustic waves known as baryon acoustic oscillations (BAOs), resulting in a non-linear spatial shift in the Fourier-space BAO signal. In this work, we make use of and extend upon an existing methodology to measure the phase shift amplitude $\beta_{\phi}$ and apply it to the DESI Data Release 1 (DR1) BAOs with an anisotropic BAO fitting pipeline. We validate the fitting methodology by testing the pipeline with two publicly available fitting codes applied to highly precise cubic box simulations and realistic simulations representative of the DESI DR1 data. We find further study towards the methods used in fitting the BAO signal will be necessary to ensure accurate constraints on $\beta_{\phi}$ in future DESI data releases. Using DESI DR1, we present individual measurements of the anisotropic BAO distortion parameters and the $\beta_{\phi}$ for the different tracers, and additionally a combined fit to $\beta_{\phi}$ resulting in $\beta_{\phi} = 2.7 \pm 1.7$. After including a prior on the distortion parameters from constraints using \textit{Planck} we find $\beta_{\phi} = 2.7^{+0.60}_{-0.67} $ suggesting $\beta_{\phi} > 0$ at 4.3$\sigma$ significance. This result may hint at a phase shift that is not purely sourced from the standard model expectation for $N_{\rm{eff}}$ or could be a upwards statistical fluctuation in the measured $\beta_{\phi}$; this result relaxes in models with additional freedom beyond $\Lambda$CDM.
- Published
- 2024
10. Polariton-induced Purcell effects via a reduced semiclassical electrodynamics approach
- Author
-
Vargas, Andres Felipe Bocanegra and Li, Tao E.
- Subjects
Physics - Chemical Physics ,Physics - Optics - Abstract
Recent experiments have demonstrated that polariton formation provides a novel strategy for modifying local molecular processes when a large ensemble of molecules is confined within an optical cavity. Herein, a numerical strategy based on coupled Maxwell--Schr\"odinger equations is examined for simulating local molecular processes in a realistic cavity structure under collective strong coupling. In this approach, only a few molecules, referred to as quantum impurities, are treated quantum mechanically, while the remaining macroscopic molecular layer and the cavity structure are modeled using dielectric functions. When a single electronic two-level system embedded in a Lorentz medium is confined in a two-dimensional Bragg resonator, our numerical simulations reveal a polariton-induced Purcell effect: the radiative decay rate of the quantum impurity is significantly enhanced by the cavity when the impurity frequency matches the polariton frequency, while the rate can sometimes be greatly suppressed when the impurity is near resonance with the bulk molecules forming strong coupling. Additionally, this approach demonstrates that the cavity absorption of light exhibits Rabi-splitting-dependent suppression due to the inclusion of a realistic cavity structure. Our simulations also identify a fundamental limitation of this approach -- an inaccurate description of polariton dephasing rates into dark modes. This arises because the dark-mode degrees of freedom are not explicitly included when most molecules are modeled using dielectric functions. As the polariton-induced Purcell effect alters molecular radiative decay differently from the Purcell effect under weak coupling, this polariton-induced effect may facilitate understanding the origin of polariton-modified photochemistry under electronic strong coupling.
- Published
- 2024
11. Near-optimal pure state estimation with adaptive Fisher-symmetric measurements
- Author
-
Vargas, C., Pereira, L., and Delgado, A.
- Subjects
Quantum Physics - Abstract
Quantum state estimation is important for various quantum information processes, including quantum communications, computation, and metrology, which require the characterization of quantum states for evaluation and optimization. We present a three-stage adaptive method for estimating $d$-dimensional pure quantum states using Fisher symmetric measurements (FSM) and a single-shot measurement basis. The result of this measurement is used to generate two FSMs that jointly estimate any pure state up to a null measure set. This estimate is used to adapt a third FMS, which provides the final estimate of the unknown state. Our approach achieves an average estimation infidelity very close to the Gill-Massar lower bound (GMB) without requiring prior information beyond the purity of the unknown state, extending the applicability of FSM to any unknown state. The total number of measurement outcomes of the method scale linearly as $7d-3$, avoiding the need for collective measurements on multiple copies of the unknown state. This work highlights the potential of adaptive estimation techniques in quantum state characterization while maintaining efficiency in the number of measurement outcomes.
- Published
- 2024
12. A new approach to strong convergence II. The classical ensembles
- Author
-
Chen, Chi-Fang, Garza-Vargas, Jorge, and van Handel, Ramon
- Subjects
Mathematics - Probability ,Mathematics - Group Theory ,Mathematics - Operator Algebras ,60B20, 15B52, 46L53, 46L54 - Abstract
The first paper in this series introduced a new approach to strong convergence of random matrices that is based primarily on soft arguments. This method was applied to achieve a refined qualitative and quantitative understanding of strong convergence of random permutation matrices and of more general representations of the symmetric group. In this paper, we introduce new ideas that make it possible to achieve stronger quantitative results and that facilitate the application of the method to new models. When applied to the Gaussian GUE/GOE/GSE ensembles of dimension $N$, these methods achieve strong convergence for noncommutative polynomials with matrix coefficients of dimension $\exp(o(N))$. This provides a sharp form of a result of Pisier on strong convergence with coefficients in a subexponential operator space. Analogous results up to logarithmic factors are obtained for Haar-distributed random matrices in $\mathrm{U}(N)/\mathrm{O}(N)/\mathrm{Sp}(N)$. We further illustrate the methods of this paper in the following applications. 1. We obtain improved rates for strong convergence of random permutations. 2. We obtain a quantitative form of strong convergence of the model introduced by Hayes for the solution of the Peterson-Thom conjecture. 3. We prove strong convergence of tensor GUE models of $\Gamma$-independence. 4. We prove strong convergence of all nontrivial representations of $\mathrm{SU}(N)$ of dimension up to $\exp(N^{1/3-\delta})$, improving a result of Magee and de la Salle., Comment: 52 pages; added a new application, and minor revisions
- Published
- 2024
13. One-sided Muckenhoupt weights and one-sided weakly porous sets in $\mathbb{R}$
- Author
-
Aimar, Hugo, Gómez, Ivana, Vargas, Ignacio Gómez, and Martín-Reyes, Francisco Javier
- Subjects
Mathematics - Classical Analysis and ODEs ,Mathematics - Metric Geometry ,28A80, 28A75, 42B37 - Abstract
In this work, we introduce the geometric concept of one-sided weakly porous sets in the real line and show that a set $E\subset\mathbb{R}$ satisfies $d(\cdot,E)^{-\alpha}\in A_1^+(\mathbb{R})\cap L^1_\textrm{loc}(\mathbb{R})$ for some $\alpha>0$ if and only if $E$ is right-sided weakly porous. Furthermore, we find that the property of being both left-sided and right-sided weakly porous is equivalent to the recent weakly porous condition discussed in the bibliography, which, in turn, was previously found to be intimately related to the usual class of Muckenhoupt weights $A_1$., Comment: 15 pages
- Published
- 2024
14. Extensive analysis of reconstruction algorithms for DESI 2024 baryon acoustic oscillations
- Author
-
Chen, X., Ding, Z., Paillas, E., Nadathur, S., Seo, H., Chen, S., Padmanabhan, N., White, M., de Mattia, A., McDonald, P., Ross, A. J., Variu, A., Rosell, A. Carnero, Hadzhiyska, B., Hanif, M. M. S, Forero-Sánchez, D., Ahlen, S., Alves, O., Andrade, U., BenZvi, S., Bianchi, D., Brooks, D., Chaussidon, E., Claybaugh, T., de la Macorra, A., Dey, Biprateep, Fanning, K., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Garcia-Quintero, C., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Hahn, C., Honscheid, K., Juneau, S., Kehoe, R., Kirkby, D., Kisner, T., Kremin, A., Levi, M. E., Meisner, A., Mena-Fernández, J., Miquel, R., Moustakas, J., Muñoz-Gutiérrez, A., Nikakhtar, F., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Rashkovetskyi, M., Rossi, G., Ruggeri, R., Sanchez, E., Saulder, C., Schlegel, D., Schubnell, M., Smith, A., Sprayberry, D., Tarlé, G., Valcin, D., Vargas-Magaña, M., Weaver, B. A., Yuan, S., and Zhou, R.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Reconstruction of the baryon acoustic oscillation (BAO) signal has been a standard procedure in BAO analyses over the past decade and has helped to improve the BAO parameter precision by a factor of ~2 on average. The Dark Energy Spectroscopic Instrument (DESI) BAO analysis for the first year (DR1) data uses the ``standard'' reconstruction framework, in which the displacement field is estimated from the observed density field by solving the linearized continuity equation in redshift space, and galaxy and random positions are shifted in order to partially remove nonlinearities. There are several approaches to solving for the displacement field in real survey data, including the multigrid (MG), iterative Fast Fourier Transform (iFFT), and iterative Fast Fourier Transform particle (iFFTP) algorithms. In this work, we analyze these algorithms and compare them with various metrics including two-point statistics and the displacement itself using realistic DESI mocks. We focus on three representative DESI samples, the emission line galaxies (ELG), quasars (QSO), and the bright galaxy sample (BGS), which cover the extreme redshifts and number densities, and potential wide-angle effects. We conclude that the MG and iFFT algorithms agree within 0.4% in post-reconstruction power spectrum on BAO scales with the RecSym convention, which does not remove large-scale redshift space distortions (RSDs), in all three tracers. The RecSym convention appears to be less sensitive to displacement errors than the RecIso convention, which attempts to remove large-scale RSDs. However, iFFTP deviates from the first two; thus, we recommend against using iFFTP without further development. In addition, we provide the optimal settings for reconstruction for five years of DESI observation. The analyses presented in this work pave the way for DESI DR1 analysis as well as future BAO analyses., Comment: 51 pages, 28 figures. Supporting publication of DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars
- Published
- 2024
15. Constraining primordial non-Gaussianity with DESI 2024 LRG and QSO samples
- Author
-
Chaussidon, E., Yèche, C., de Mattia, A., Payerne, C., McDonald, P., Ross, A. J., Ahlen, S., Bianchi, D., Brooks, D., Burtin, E., Claybaugh, T., de la Macorra, A., Doel, P., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gutierrez, G., Guy, J., Honscheid, K., Howlett, C., Huterer, D., Kehoe, R., Kirkby, D., Kisner, T., Kremin, A., Guillou, L. Le, Levi, M. E., Manera, M., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Niz, G., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Ravoux, C., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Weaver, B. A., Zhao, C., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We analyse the large-scale clustering of the Luminous Red Galaxy (LRG) and Quasar (QSO) sample from the first data release (DR1) of the Dark Energy Spectroscopic Instrument (DESI). In particular, we constrain the primordial non-Gaussianity (PNG) parameter $f_{\rm NL}^{\rm loc}$ via the large-scale scale-dependent bias in the power spectrum using $1,631,716$ LRGs ($0.6 < z < 1.1$) and $1,189,129$ QSOs ($0.8 < z < 3.1$). This new measurement takes advantage of the enormous statistical power at large scales of DESI DR1 data, surpassing the latest data release (DR16) of the extended Baryon Oscillation Spectroscopic Survey (eBOSS). For the first time in this kind of analysis, we use a blinding procedure to mitigate the risk of confirmation bias in our results. We improve the model of the radial integral constraint proposing an innovative correction of the window function. We also carefully test the mitigation of the dependence of the target selection on the photometry qualities by incorporating an angular integral constraint contribution to the window function, and validate our methodology with the blinded data. Finally, combining the two samples, we measure $f_{\rm NL}^{\rm loc} = {-3.6}_{-9.1}^{+9.0}$ at $68\%$ confidence, where we assume the universality relation for the LRG sample and a recent merger model for the QSO sample about the response of bias to primordial non-Gaussianity. Adopting the universality relation for the PNG bias in the QSO analysis leads to $f_{\rm NL}^{\rm loc} = 3.5_{-7.4}^{+10.7}$ at $68\%$ confidence. This measurement is the most precise determination of primordial non-Gaussianity using large-scale structure to date, surpassing the latest result from eBOSS by a factor of $2.3$.
- Published
- 2024
16. MOLPIPx: an end-to-end differentiable package for permutationally invariant polynomials in Python and Rust
- Author
-
Drehwald, Manuel S., Jamali, Asma, and Vargas-Hernández, Rodrigo A.
- Subjects
Physics - Chemical Physics ,Physics - Computational Physics - Abstract
In this work, we present MOLPIPx, a versatile library designed to seamlessly integrate Permutationally Invariant Polynomials (PIPs) with modern machine learning frameworks, enabling the efficient development of linear models, neural networks, and Gaussian process models. These methodologies are widely employed for parameterizing potential energy surfaces across diverse molecular systems. MOLPIPx leverages two powerful automatic differentiation engines -JAX and EnzymeAD-Rust- to facilitate the efficient computation of energy gradients and higher-order derivatives, which are essential for tasks such as force field development and dynamic simulations. MOLPIPx is available at https://github.com/ChemAI-Lab/molpipx.
- Published
- 2024
17. Machine learning interatomic potential for modeling uranium mononitride
- Author
-
Alzate-Vargas, Lorena, Subedi, Kashi N., Lubbers, Nicholas, Cooper, Michael W. D, Tutchton, Roxanne M., Gibson, Tammie, and Messerly, Richard A.
- Subjects
Condensed Matter - Materials Science - Abstract
Uranium mononitride (UN) is a promising accident tolerant fuel due to its high fissile density and high thermal conductivity. In this study, we developed the first machine learning interatomic potentials for reliable atomic-scale modeling of UN at finite temperatures. We constructed a training set using density functional theory (DFT) calculations that was enriched through an active learning procedure and two neural network potentials were generated. We found that both potentials can reproduce some thermophysical properties of interest such as temperature dependent heat capacity. We also evaluated the energy of stoichiometric defect reactions and defect migration barriers and found close agreement with DFT values demonstrating that our potentials can be used for a description of defects in UN.
- Published
- 2024
18. Magnetic-thermodynamic phase transition in strained phosphorous-doped graphene
- Author
-
Cortés, Natalia, Hernández-Tecorralco, J., Meza-Montes, L., de Coss, R., and Vargas, Patricio
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
We explore quantum-thermodynamic effects in a phosphorous (P)-doped graphene monolayer subjected to biaxial tensile strain. Introducing substitutional P atoms in the graphene lattice generates a tunable spin magnetic moment controlled by the strain control parameter $\varepsilon$. This leads to a magnetic quantum phase transition (MQPT) at zero temperature modulated by $\varepsilon$. The system transitions from a magnetic phase, characterized by an out-of-plane $sp^3$ type hybridization of the P-carbon (P-C) bonds, to a non-magnetic phase when these bonds switch to in-plane $sp^2$ hybridization. Employing a Fermi-Dirac statistical model, we calculate key thermodynamic quantities as the electronic entropy $S_e$ and electronic specific heat $C_e$. At finite temperatures, we find the MQPT is reflected in both $S_e$ and $C_e$, which display a distinctive $\Lambda$-shaped profile as a function of $\varepsilon$. These thermodynamic quantities sharply increase up to $\varepsilon = 5\% $ in the magnetic regime, followed by a sudden drop at $\varepsilon = 5.5\% $, transitioning to a linear dependence on $\varepsilon$ in the nonmagnetic regime. Notably, $S_e$ and $C_e$ capture the MQPT behavior for low and moderate temperature ranges, providing insights into the accessible electronic states in P-doped graphene. This controllable magnetic-to-nonmagnetic switch offers potential applications in electronic nanodevices operating at finite temperatures.
- Published
- 2024
19. Modified Gravity Constraints from the Full Shape Modeling of Clustering Measurements from DESI 2024
- Author
-
Ishak, M., Pan, J., Calderon, R., Lodha, K., Valogiannis, G., Aviles, A., Niz, G., Yi, L., Zheng, C., Garcia-Quintero, C., de Mattia, A., Medina-Varela, L., Cervantes-Cota, J. L., Andrade, U., Huterer, D., Noriega, H. E., Zhao, G., Shafieloo, A., Fang, W., Ahlen, S., Bianchi, D., Brooks, D., Burtin, E., Chaussidon, E., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Fanning, K., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gil-Marín, H., Gutierrez, G., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Kirkby, D., Kisner, T., Kremin, A., Landriau, M., Guillou, L. Le, Leauthaud, A., Levi, M. E., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Palanque-Delabrouille, N., Percival, W. J., Poppett, C., Prada, F., Pérez-Ràfols, I., Ross, A. J., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magana, M., Weaver, B. A., Wechsler, R. H., Yèche, C., Zarrouk, P., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological constraints on deviations from general relativity (GR) from the first-year of clustering observations from the Dark Energy Spectroscopic Instrument (DESI) in combination with other datasets. We first consider the $\mu(a,k)$-$\Sigma(a,k)$ modified gravity (MG) parametrization (as well as $\eta(a,k)$) in flat $\Lambda$CDM and $w_0 w_a$CDM backgrounds. Using a functional form for time-only evolution gives $\mu_0= 0.11^{+0.44}_{-0.54}$ from DESI(FS+BAO)+BBN and a wide prior on $n_{s}$. Using DESI(FS+BAO)+CMB+DESY3+DESY5-SN, we obtain $\mu_0 = 0.05\pm 0.22$ and $\Sigma_0 = 0.009\pm 0.045$ in the $\Lambda$CDM background. In $w_0 w_a$CDM, we obtain $\mu_0 =-0.24^{+0.32}_{-0.28}$ and $\Sigma_0 = 0.006\pm 0.043$, consistent with GR, and we still find a preference of the data for dynamical dark energy with $w_0>-1$ and $w_a<0$. We then use binned forms in the two backgrounds starting with two bins in redshift and then combining them with two bins in scale for a total of 4 and 8 MG parameters, respectively. All MG parameters are found consistent with GR. We also find that the tension reported for $\Sigma_0$ with GR when using Planck PR3 goes away when we use the recent LoLLiPoP+HiLLiPoP likelihoods. As noted previously, this seems to indicate that the tension is related to the CMB lensing anomaly in PR3 which is also alleviated when using these likelihoods. We then constrain the class of Horndeski theory in the effective field theory of dark energy. We consider both EFT-basis and $\alpha$-basis. Assuming a power law parametrization for the function $\Omega$, which controls non-minimal coupling, we obtain $\Omega_0 = 0.0120^{+0.0021}_{-0.013}$ and $s_0 = 0.99^{+0.54}_{-0.20}$ from DESI(FS+BAO)+DESY5SN+CMB in a $\Lambda$CDM background. Similar results are obtained when using the $\alpha$-basis, where we constrain $c_M<1.24$, and are all consistent with GR. [Abridged.], Comment: 52 pages, 10 figures. This DESI Collaboration Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/)
- Published
- 2024
20. Characterization of DESI fiber assignment incompleteness effect on 2-point clustering and mitigation methods for DR1 analysis
- Author
-
Bianchi, D., Hanif, M. M. S, Rosell, A. Carnero, Lasker, J., Ross, A. J., Pinon, M., de Mattia, A., White, M., Ahlen, S., Bailey, S., Brooks, D., Burtin, E., Chaussidon, E., Claybaugh, T., Cole, S., de la Macorra, A., Ferraro, S., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Guy, J., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Kirkby, D., Kisner, T., Kremin, A., Landriau, M., Guillou, L. Le, Levi, M. E., McDonald, P., Meisner, A., Miquel, R., Moustakas, J., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Raichoor, A., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sharples, R., Silber, J., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., Weaver, B. A., Zarrouk, P., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present an in-depth analysis of the fiber assignment incompleteness in the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1). This incompleteness is caused by the restricted mobility of the robotic fiber positioner in the DESI focal plane, which limits the number of galaxies that can be observed at the same time, especially at small angular separations. As a result, the observed clustering amplitude is suppressed in a scale-dependent manner, which, if not addressed, can severely impact the inference of cosmological parameters. We discuss the methods adopted for simulating fiber assignment on mocks and data. In particular, we introduce the fast fiber assignment (FFA) emulator, which was employed to obtain the power spectrum covariance adopted for the DR1 full-shape analysis. We present the mitigation techniques, organised in two classes: measurement stage and model stage. We then use high fidelity mocks as a reference to quantify both the accuracy of the FFA emulator and the effectiveness of the different measurement-stage mitigation techniques. This complements the studies conducted in a parallel paper for the model-stage techniques, namely the $\theta$-cut approach. We find that pairwise inverse probability (PIP) weights with angular upweighting recover the "true" clustering in all the cases considered, in both Fourier and configuration space. Notably, we present the first ever power spectrum measurement with PIP weights from real data., Comment: 42 pages, 19 figures
- Published
- 2024
21. Mitigating Imaging Systematics for DESI 2024 Emission Line Galaxies and Beyond
- Author
-
Rosado-Marín, A. J., Ross, A. J., Seo, H., Rezaie, M., Kong, H., de Mattia, A., Zhou, R., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., de la Macorra, A., Doel, P., Fanning, K., Ferraro, S., Gontcho, S. Gontcho A, Gutierrez, G., Hahn, C., Juneau, S., Kehoe, R., Kremin, A., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Palanque-Delabrouille, N., Percival, W. J., Prada, F., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sprayberry, D., Vargas-Magaña, M., Weaver, B. A., Zou, H., Ruggeri, R., Krolewski, A., Yu, J., Raichoor, A., and Hanif, M. M. S
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Emission Line Galaxies (ELGs) are one of the main tracers that the Dark Energy Spectroscopic Instrument (DESI) uses to probe the universe. However, they are afflicted by strong spurious correlations between target density and observing conditions known as imaging systematics. We present the imaging systematics mitigation applied to the DESI Data Release 1 (DR1) large-scale structure catalogs used in the DESI 2024 cosmological analyses. We also explore extensions of the fiducial treatment. This includes a combined approach, through forward image simulations in conjunction with neural network-based regression, to obtain an angular selection function that mitigates the imaging systematics observed in the DESI DR1 ELGs target density. We further derive a line-of-sight selection function from the forward model that removes the strong redshift dependence between imaging systematics and low redshift ELGs. Combining both angular and redshift-dependent systematics, we construct a 3D selection function and assess the impact of all selection functions on clustering statistics. We quantify differences between these extended treatments and the fiducial treatment in terms of the measured 2-point statistics. We find that the results are generally consistent with the fiducial treatment and conclude that the differences are far less than the imaging systematics uncertainty included in DESI 2024 full-shape measurements. We extend our investigation to the ELGs at $0.6
- Published
- 2024
22. DESI 2024 VII: Cosmological Constraints from the Full-Shape Modeling of Clustering Measurements
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Prieto, C. Allende, Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bahr-Kalus, B., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Bonici, M., Brieden, S., Brodzeller, A., Brooks, D., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chebat, D., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elbers, W., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Frenk, C. S., Garcia-Quintero, C., Garrison, L. H., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Joyce, R., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kong, H., Koposov, S. E., Kremin, A., Krolewski, A., Lahav, O., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Matthewson, W., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mudur, N., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Schubnell, M., Seo, H., Shafieloo, A., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Taylor, P., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Valogiannis, G., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yi, L., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., Zhuang, T., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological results from the measurement of clustering of galaxy, quasar and Lyman-$\alpha$ forest tracers from the first year of observations with the Dark Energy Spectroscopic Instrument (DESI Data Release 1). We adopt the full-shape (FS) modeling of the power spectrum, including the effects of redshift-space distortions, in an analysis which has been validated in a series of supporting papers. In the flat $\Lambda$CDM cosmological model, DESI (FS+BAO), combined with a baryon density prior from Big Bang Nucleosynthesis and a weak prior on the scalar spectral index, determines matter density to $\Omega_\mathrm{m}=0.2962\pm 0.0095$, and the amplitude of mass fluctuations to $\sigma_8=0.842\pm 0.034$. The addition of the cosmic microwave background (CMB) data tightens these constraints to $\Omega_\mathrm{m}=0.3056\pm 0.0049$ and $\sigma_8=0.8121\pm 0.0053$, while further addition of the the joint clustering and lensing analysis from the Dark Energy Survey Year-3 (DESY3) data leads to a 0.4% determination of the Hubble constant, $H_0 = (68.40\pm 0.27)\,{\rm km\,s^{-1}\,Mpc^{-1}}$. In models with a time-varying dark energy equation of state, combinations of DESI (FS+BAO) with CMB and type Ia supernovae continue to show the preference, previously found in the DESI DR1 BAO analysis, for $w_0>-1$ and $w_a<0$ with similar levels of significance. DESI data, in combination with the CMB, impose the upper limits on the sum of the neutrino masses of $\sum m_\nu < 0.071\,{\rm eV}$ at 95% confidence. DESI data alone measure the modified-gravity parameter that controls the clustering of massive particles, $\mu_0=0.11^{+0.45}_{-0.54}$, while the combination of DESI with the CMB and the clustering and lensing analysis from DESY3 constrains both modified-gravity parameters, giving $\mu_0 = 0.04\pm 0.22$ and $\Sigma_0 = 0.044\pm 0.047$, in agreement with general relativity. [Abridged.], Comment: This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/). 55 pages, 10 figures
- Published
- 2024
23. DESI 2024 II: Sample Definitions, Characteristics, and Two-point Clustering Statistics
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Brieden, S., Brodzeller, A., Brooks, D., Brown, Z., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Demina, R., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Frenk, C. S., Garcia-Quintero, C., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Hou, J., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kitaura, F. -S., Kong, H., Kremin, A., Krolewski, A., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mudur, N., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Scholte, D., Schubnell, M., Seo, H., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the samples of galaxies and quasars used for DESI 2024 cosmological analyses, drawn from the DESI Data Release 1 (DR1). We describe the construction of large-scale structure (LSS) catalogs from these samples, which include matched sets of synthetic reference `randoms' and weights that account for variations in the observed density of the samples due to experimental design and varying instrument performance. We detail how we correct for variations in observational completeness, the input `target' densities due to imaging systematics, and the ability to confidently measure redshifts from DESI spectra. We then summarize how remaining uncertainties in the corrections can be translated to systematic uncertainties for particular analyses. We describe the weights added to maximize the signal-to-noise of DESI DR1 2-point clustering measurements. We detail measurement pipelines applied to the LSS catalogs that obtain 2-point clustering measurements in configuration and Fourier space. The resulting 2-point measurements depend on window functions and normalization constraints particular to each sample, and we present the corrections required to match models to the data. We compare the configuration- and Fourier-space 2-point clustering of the data samples to that recovered from simulations of DESI DR1 and find they are, generally, in statistical agreement to within 2\% in the inferred real-space over-density field. The LSS catalogs, 2-point measurements, and their covariance matrices will be released publicly with DESI DR1., Comment: This DESI Collaboration Key Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/)
- Published
- 2024
24. DESI 2024 V: Full-Shape Galaxy Clustering from Galaxies and Quasars
- Author
-
DESI Collaboration, Adame, A. G., Aguilar, J., Ahlen, S., Alam, S., Alexander, D. M., Alvarez, M., Alves, O., Anand, A., Andrade, U., Armengaud, E., Avila, S., Aviles, A., Awan, H., Bailey, S., Baltay, C., Bault, A., Behera, J., BenZvi, S., Beutler, F., Bianchi, D., Blake, C., Blum, R., Brieden, S., Brodzeller, A., Brooks, D., Buckley-Geer, E., Burtin, E., Calderon, R., Canning, R., Rosell, A. Carnero, Cereskaite, R., Cervantes-Cota, J. L., Chabanier, S., Chaussidon, E., Chaves-Montero, J., Chen, S., Chen, X., Claybaugh, T., Cole, S., Cuceu, A., Davis, T. M., Dawson, K., de la Macorra, A., de Mattia, A., Deiosso, N., Dey, A., Dey, B., Ding, Z., Doel, P., Edelstein, J., Eftekharzadeh, S., Eisenstein, D. J., Elliott, A., Fagrelius, P., Fanning, K., Ferraro, S., Ereza, J., Findlay, N., Flaugher, B., Font-Ribera, A., Forero-Sánchez, D., Forero-Romero, J. E., Garcia-Quintero, C., Garrison, L. H., Gaztañaga, E., Gil-Marín, H., Gontcho, S. Gontcho A, Gonzalez-Morales, A. X., Gonzalez-Perez, V., Gordon, C., Green, D., Gruen, D., Gsponer, R., Gutierrez, G., Guy, J., Hadzhiyska, B., Hahn, C., Hanif, M. M. S, Herrera-Alcantar, H. K., Honscheid, K., Howlett, C., Huterer, D., Iršič, V., Ishak, M., Juneau, S., Karaçaylı, N. G., Kehoe, R., Kent, S., Kirkby, D., Kong, H., Koposov, S. E., Kremin, A., Krolewski, A., Lai, Y., Lan, T. -W., Landriau, M., Lang, D., Lasker, J., Goff, J. M. Le, Guillou, L. Le, Leauthaud, A., Levi, M. E., Li, T. S., Lodha, K., Magneville, C., Manera, M., Margala, D., Martini, P., Maus, M., McDonald, P., Medina-Varela, L., Meisner, A., Mena-Fernández, J., Miquel, R., Moon, J., Moore, S., Moustakas, J., Mueller, E., Muñoz-Gutiérrez, A., Myers, A. D., Nadathur, S., Napolitano, L., Neveux, R., Newman, J. A., Nguyen, N. M., Nie, J., Niz, G., Noriega, H. E., Padmanabhan, N., Paillas, E., Palanque-Delabrouille, N., Pan, J., Penmetsa, S., Percival, W. J., Pieri, M. M., Pinon, M., Poppett, C., Porredon, A., Prada, F., Pérez-Fernández, A., Pérez-Ràfols, I., Rabinowitz, D., Raichoor, A., Ramírez-Pérez, C., Ramirez-Solano, S., Rashkovetskyi, M., Ravoux, C., Rezaie, M., Rich, J., Rocher, A., Rockosi, C., Rodríguez-Martínez, F., Roe, N. A., Rosado-Marin, A., Ross, A. J., Rossi, G., Ruggeri, R., Ruhlmann-Kleider, V., Samushia, L., Sanchez, E., Saulder, C., Schlafly, E. F., Schlegel, D., Schubnell, M., Seo, H., Sharples, R., Silber, J., Slosar, A., Smith, A., Sprayberry, D., Tan, T., Tarlé, G., Trusov, S., Vaisakh, R., Valcin, D., Valdes, F., Vargas-Magaña, M., Verde, L., Walther, M., Wang, B., Wang, M. S., Weaver, B. A., Weaverdyck, N., Wechsler, R. H., Weinberg, D. H., White, M., Wilson, M. J., Yu, J., Yu, Y., Yuan, S., Yèche, C., Zaborowski, E. A., Zarrouk, P., Zhang, H., Zhao, C., Zhao, R., Zhou, R., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the measurements and cosmological implications of the galaxy two-point clustering using over 4.7 million unique galaxy and quasar redshifts in the range $0.1
- Published
- 2024
25. Exploring HOD-dependent systematics for the DESI 2024 Full-Shape galaxy clustering analysis
- Author
-
Findlay, N., Nadathur, S., Percival, W. J., de Mattia, A., Zarrouk, P., Gil-Marín, H., Alves, O., Mena-Fernández, J., Garcia-Quintero, C., Rocher, A., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Dey, Arjun, Doel, P., Fanning, K., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gutierrez, G., Hahn, C., Honscheid, K., Howlett, C., Juneau, S., Levi, M. E., Meisner, A., Miquel, R., Moustakas, J., Palanque-Delabrouille, N., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Vargas-Magaña, M., and Weaver, B. A.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We analyse the robustness of the DESI 2024 cosmological inference from fits to the full shape of the galaxy power spectrum to uncertainties in the Halo Occupation Distribution (HOD) model of the galaxy-halo connection and the choice of priors on nuisance parameters. We assess variations in the recovered cosmological parameters across a range of mocks populated with different HOD models and find that shifts are often greater than 20% of the expected statistical uncertainties from the DESI data. We encapsulate the effect of such shifts in terms of a systematic covariance term, $\mathsf{C}_{\rm HOD}$, and an additional diagonal contribution quantifying the impact of our choice of nuisance parameter priors on the ability of the effective field theory (EFT) model to correctly recover the cosmological parameters of the simulations. These two covariance contributions are designed to be added to the usual covariance term, $\mathsf{C}_{\rm stat}$, describing the statistical uncertainty in the power spectrum measurement, in order to fairly represent these sources of systematic uncertainty. This approach is more general and robust to choices of model free parameters or additional external datasets used in cosmological fits than the alternative approach of adding systematic uncertainties at the level of the recovered marginalised parameter posteriors. We compare the approaches within the context of a fixed $\Lambda$CDM model and demonstrate that our method gives conservative estimates of the systematic uncertainty that nevertheless have little impact on the final posteriors obtained from DESI data., Comment: This DESI Collaboration Publication is part of the 2024 publication series using the first year of observations (see https://data.desi.lbl.gov/doc/papers/). 26 pages, 10 figures
- Published
- 2024
26. Bounds on Lorentz and CPT violation from the $1S$-$2P$ transition in antihydrogen
- Author
-
Vargas, Arnaldo J.
- Subjects
High Energy Physics - Phenomenology - Abstract
A model for the Lorentz- and CPT-violating frequency shift for the antihydrogen $1S$-$2P$ transition in the presence of an external magnetic field is derived. Using the recent measurement of the $1S$-$2P$ transition frequency in antihydrogen by the ALPHA collaboration, which they demonstrated agrees with predictions from the Standard Model of particle physics, we establish the first constraints on 26 effective coefficients for Lorentz and CPT violation. Also, this work uses these results to underscore the value of measuring multiple transition frequencies to test CPT symmetry through antihydrogen spectroscopy, emphasizing the advantages of transitions involving states with higher angular momentum., Comment: 9 pages
- Published
- 2024
27. Beyond Static Tools: Evaluating Large Language Models for Cryptographic Misuse Detection
- Author
-
Masood, Zohaib and Martin, Miguel Vargas
- Subjects
Computer Science - Cryptography and Security ,Computer Science - Machine Learning - Abstract
The use of Large Language Models (LLMs) in software development is rapidly growing, with developers increasingly relying on these models for coding assistance, including security-critical tasks. Our work presents a comprehensive comparison between traditional static analysis tools for cryptographic API misuse detection-CryptoGuard, CogniCrypt, and Snyk Code-and the LLMs-GPT and Gemini. Using benchmark datasets (OWASP, CryptoAPI, and MASC), we evaluate the effectiveness of each tool in identifying cryptographic misuses. Our findings show that GPT 4-o-mini surpasses current state-of-the-art static analysis tools on the CryptoAPI and MASC datasets, though it lags on the OWASP dataset. Additionally, we assess the quality of LLM responses to determine which models provide actionable and accurate advice, giving developers insights into their practical utility for secure coding. This study highlights the comparative strengths and limitations of static analysis versus LLM-driven approaches, offering valuable insights into the evolving role of AI in advancing software security practices.
- Published
- 2024
28. SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms
- Author
-
Chatterjee, Soumick, Mattern, Hendrik, Dörner, Marc, Sciarra, Alessandro, Dubost, Florian, Schnurre, Hannes, Khatun, Rupali, Yu, Chun-Chih, Hsieh, Tsung-Lin, Tsai, Yi-Shan, Fang, Yi-Zeng, Yang, Yung-Ching, Huang, Juinn-Dar, Xu, Marshall, Liu, Siyu, Ribeiro, Fernanda L., Bollmann, Saskia, Chintalapati, Karthikesh Varma, Radhakrishna, Chethan Mysuru, Kumara, Sri Chandana Hudukula Ram, Sutrave, Raviteja, Qayyum, Abdul, Mazher, Moona, Razzak, Imran, Rodero, Cristobal, Niederren, Steven, Lin, Fengming, Xia, Yan, Wang, Jiacheng, Qiu, Riyu, Wang, Liansheng, Panah, Arya Yazdan, Jurdi, Rosana El, Fu, Guanghui, Arslan, Janan, Vaillant, Ghislain, Valabregue, Romain, Dormont, Didier, Stankoff, Bruno, Colliot, Olivier, Vargas, Luisa, Chacón, Isai Daniel, Pitsiorlas, Ioannis, Arbeláez, Pablo, Zuluaga, Maria A., Schreiber, Stefanie, Speck, Oliver, and Nürnberger, Andreas
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition - Abstract
The human brain receives nutrients and oxygen through an intricate network of blood vessels. Pathology affecting small vessels, at the mesoscopic scale, represents a critical vulnerability within the cerebral blood supply and can lead to severe conditions, such as Cerebral Small Vessel Diseases. The advent of 7 Tesla MRI systems has enabled the acquisition of higher spatial resolution images, making it possible to visualise such vessels in the brain. However, the lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms. To address this, the SMILE-UHURA challenge was organised. This challenge, held in conjunction with the ISBI 2023, in Cartagena de Indias, Colombia, aimed to provide a platform for researchers working on related topics. The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI. This dataset was created through a combination of automated pre-segmentation and extensive manual refinement. In this manuscript, sixteen submitted methods and two baseline methods are compared both quantitatively and qualitatively on two different datasets: held-out test MRAs from the same dataset as the training data (with labels kept secret) and a separate 7T ToF MRA dataset where both input volumes and labels are kept secret. The results demonstrate that most of the submitted deep learning methods, trained on the provided training dataset, achieved reliable segmentation performance. Dice scores reached up to 0.838 $\pm$ 0.066 and 0.716 $\pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $\pm$ 0.15.
- Published
- 2024
29. Projection onto cones generated by epigraphs of perspective functions
- Author
-
Briceño-Arias, Luis M. and Vivar-Vargas, Cristóbal
- Subjects
Mathematics - Optimization and Control ,46N10, 47J20, 49J53, 49N15, 90C25 - Abstract
In this paper we provide an efficient computation of the projection onto the cone generated by the epigraph of the perspective of any convex lower semicontinuous function. Our formula requires solving only two scalar equations involving the proximity operator of the function. This enables the computation of projections, for instance, onto exponential and power cones, and extends to previously unexplored conic projections, such as the projection onto the hyperbolic cone. We compare numerically the efficiency of the proposed approach in the case of exponential cones with an open source available method in the literature, illustrating its efficiency., Comment: 19 pages
- Published
- 2024
30. FCA using the Concept Explorer in 2024
- Author
-
Vargas-GarcÍa, Edith and Wachtel, Andreas
- Subjects
Mathematics - Logic ,Computer Science - Logic in Computer Science ,06D50 (Primary), 06B05, 06A06 (Secondary) ,D.m ,G.4 ,I.3.8 - Abstract
In this note we give a very short introduction to Formal Concept Analysis, accompanied by an example in order to build concept lattices from a context. We build the lattice using the Java-based software Concept Explorer (ConExp) in a recent version of Linux. Installing an appropriate Java version is necessary, because ConExp was developed some time ago using a Sun Java version, which is not open-source. As a result, it has been observed that ConExp will not build a lattice when started with an open-source Java version. Therefore, we also sketch the procedure we followed to install an appropriate Java version which makes ConExp work again, i.e., to "build lattices again". We also show how to start ConExp with a 32 bit Java version, which requires a few additional libraries., Comment: 10 pages, 1 context, 9 figures
- Published
- 2024
31. Test-Time Adaptation in Point Clouds: Leveraging Sampling Variation with Weight Averaging
- Author
-
Bahri, Ali, Yazdanpanah, Moslem, Noori, Mehrdad, Oghani, Sahar Dastani, Cheraghalikhani, Milad, Osowiech, David, Beizaee, Farzad, vargas-hakim, Gustavo adolfo., Ayed, Ismail Ben, and Desrosiers, Christian
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Test-Time Adaptation (TTA) addresses distribution shifts during testing by adapting a pretrained model without access to source data. In this work, we propose a novel TTA approach for 3D point cloud classification, combining sampling variation with weight averaging. Our method leverages Farthest Point Sampling (FPS) and K-Nearest Neighbors (KNN) to create multiple point cloud representations, adapting the model for each variation using the TENT algorithm. The final model parameters are obtained by averaging the adapted weights, leading to improved robustness against distribution shifts. Extensive experiments on ModelNet40-C, ShapeNet-C, and ScanObjectNN-C datasets, with different backbones (Point-MAE, PointNet, DGCNN), demonstrate that our approach consistently outperforms existing methods while maintaining minimal resource overhead. The proposed method effectively enhances model generalization and stability in challenging real-world conditions.
- Published
- 2024
32. Entropy alternatives for equilibrium and out of equilibrium systems
- Author
-
Vogel, Eugenio E., Peña, Francisco J., Saravia, G., and Vargas, P.
- Subjects
Condensed Matter - Statistical Mechanics ,Condensed Matter - Disordered Systems and Neural Networks - Abstract
We propose an entropy-related function (non-repeatability) that describes dynamical behaviors in complex systems. A normalized version of this function (mutability) has been previously used in statistical physics. To illustrate their characteristics, we apply these functions to different systems: (a) magnetic moments on a square lattice and (b) real seismic data extracted from the IPOC-2007-2014 catalog. These systems are well-established in the literature, making them suitable benchmarks for testing the new approach. Shannon entropy is used as a reference to facilitate comparison, enabling us to highlight similarities, differences, and the potential benefits of the new measure. Notably, non-repeatability and mutability are sensitive to the order in which the data sequence is collected, distinguishing them from traditional entropy measures.
- Published
- 2024
33. Quantum Deep Equilibrium Models
- Author
-
Schleich, Philipp, Skreta, Marta, Kristensen, Lasse B., Vargas-Hernández, Rodrigo A., and Aspuru-Guzik, Alán
- Subjects
Computer Science - Machine Learning ,Quantum Physics - Abstract
The feasibility of variational quantum algorithms, the most popular correspondent of neural networks on noisy, near-term quantum hardware, is highly impacted by the circuit depth of the involved parametrized quantum circuits (PQCs). Higher depth increases expressivity, but also results in a detrimental accumulation of errors. Furthermore, the number of parameters involved in the PQC significantly influences the performance through the necessary number of measurements to evaluate gradients, which scales linearly with the number of parameters. Motivated by this, we look at deep equilibrium models (DEQs), which mimic an infinite-depth, weight-tied network using a fraction of the memory by employing a root solver to find the fixed points of the network. In this work, we present Quantum Deep Equilibrium Models (QDEQs): a training paradigm that learns parameters of a quantum machine learning model given by a PQC using DEQs. To our knowledge, no work has yet explored the application of DEQs to QML models. We apply QDEQs to find the parameters of a quantum circuit in two settings: the first involves classifying MNIST-4 digits with 4 qubits; the second extends it to 10 classes of MNIST, FashionMNIST and CIFAR. We find that QDEQ is not only competitive with comparable existing baseline models, but also achieves higher performance than a network with 5 times more layers. This demonstrates that the QDEQ paradigm can be used to develop significantly more shallow quantum circuits for a given task, something which is essential for the utility of near-term quantum computers. Our code is available at https://github.com/martaskrt/qdeq., Comment: To be published in NeurIPS 2024
- Published
- 2024
34. Spectral study of very high energy gamma rays from SS 433 with HAWC
- Author
-
Alfaro, R., Alvarez, C., Arteaga-Velázquez, J. C., Rojas, D. Avila, Solares, H. A. Ayala, Babu, R., Belmont-Moreno, E., Caballero-Mora, K. S., Capistrán, T., Carramiñana, A., Casanova, S., Cotzomi, J., De la Fuente, E., Depaoli, D., Di Lalla, N., Hernandez, R. Diaz, Dingus, B. L ., DuVernois, M. A., Engel, K., Ergin, T., Espinoza, C ., Fan, K. L., Fang, K., Fraija, N., Fraija, S., García-González, J. A., Muñoz, A. González, González, M. M., Goodman, J. A., Groetsch, S., Harding, J. P., Hernández-Cadena, S., Herzog, I., Huang, D., Hueyotl-Zahuantitla, F., Hüntemeyer, P., Iriarte, A., Kaufmann, S., Lara, A ., Lee, W. H., Lee, J., de León, C., Vargas, H. León, Longinotti, A. L., Luis-Raya, G., Malone, K., Martínez-Castro, J., Matthews, J. A., Miranda-Romagnoli, P., Montes, J. A., Moreno, E., Mostafá, M., Nellen, L., Nisa, M. U ., Noriega-Papaqui, R ., Araujo, Y. Pérez, Pérez-Pérez, E. G., Rho, C. D., Rosa-González, D., Ruiz-Velasco, E ., Salazar, H., Sandoval, A., Schneider, M., Serna-Franco, J., Smith, A. J., Son, Y., Springer, R. W ., Tibolla, O., Tollefson, K., Torres, I., Torres-Escobedo, R., Turner, R., Ureña-Mena, F., Varela, E ., Villaseñor, L., Wang, X., Wang, Z., Watson, I. J., Yu, S ., Yun-Cárcamo, S., and Zhou, H.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Very-high-energy (0.1-100 TeV) gamma-ray emission was observed in HAWC data from the lobes of the microquasar SS 433, making them the first set of astrophysical jets that were resolved at TeV energies. In this work, we update the analysis of SS 433 using 2,565 days of data from the High Altitude Water Cherenkov (HAWC) observatory. Our analysis reports the detection of a point-like source in the east lobe at a significance of $6.6\,\sigma$ and in the west lobe at a significance of $8.2\,\sigma$. For each jet lobe, we localize the gamma-ray emission and identify a best-fit position. The locations are close to the X-ray emission sites "e1" and "w1" for the east and west lobes, respectively. We analyze the spectral energy distributions and find that the energy spectra of the lobes are consistent with a simple power-law $\text{d}N/\text{d}E\propto E^{\alpha}$ with $\alpha = -2.44^{+0.13+0.04}_{-0.12-0.04}$ and $\alpha = -2.35^{+0.12+0.03}_{-0.11-0.03}$ for the east and west lobes, respectively. The maximum energy of photons from the east and west lobes reaches 56 TeV and 123 TeV, respectively. We compare our observations to various models and conclude that the very-high-energy gamma-ray emission can be produced by a population of electrons that were efficiently accelerated.
- Published
- 2024
- Full Text
- View/download PDF
35. Directional derivatives and the central limit theorem on compact general one-dimensional lattices
- Author
-
Lopes, Artur O. and Vargas, Victor
- Subjects
Mathematics - Dynamical Systems ,Condensed Matter - Statistical Mechanics ,Mathematics - Probability ,#7D35, 28Dxx, 37A60 - Abstract
We will show the central limit theorem for the general one-dimensional lattice where the space of symbols is a compact metric space. We consider the CLT for Lipschitz-Gibbs probabilities and in the proof we use several properties of the Ruelle operator defined on our setting; this will require fixing an {\em a priori probability}. An important issue in the proof of the CLT is the existence of a certain second-order derivative, and this will follow from the analytic properties that will be described in detail throughout the paper. As additional results of independent interest, we will also describe some explicit estimates of the first and second directional derivatives of some dynamical entities like entropy and pressure. For example: given a fixed potential $f$, and a variable observable $\eta$ on the Kernel of the Ruelle operator $\mathcal{L}_f$, we consider the equilibrium probability $\mu_{f + t \,\eta}$ for $f + t \,\eta$. We estimate the values $ \frac{d}{dt} h (\mu_{f + t \,\eta})|_{t=0}$ and $ \frac{d^2}{dt^2} h (\mu_{f + t \,\eta})|_{t=0}$, where $h (\mu_{f + t \,\eta})$ is the entropy of $ \mu_{C + t \,\eta}$. For fixed $f$ we can find conditions that can indicate the $\eta$ attaining the maximal possible value of $ \frac{d}{dt} h (\mu_{f + t \,\eta})|_{t=0}$ (up to a natural normalization of $\eta)$, entirely in terms of elements on the kernel of $\mathcal{L}_f$. We also consider directional derivatives of the eigenfunction.
- Published
- 2024
36. Implementaci\'on de Navegaci\'on en Plataforma Rob\'otica M\'ovil Basada en ROS y Gazebo
- Author
-
Da Silva, Angel, Fernández, Santiago, Vidal, Braian, Sodre, Hiago, Moraes, Pablo, Peters, Christopher, Barcelona, Sebastian, Sandin, Vincent, Moraes, William, Mazondo, Ahilen, Macedo, Brandon, Assunção, Nathalie, de Vargas, Bruna, Kelbouscas, André, and Grando, Ricardo
- Subjects
Computer Science - Robotics - Abstract
This research focused on utilizing ROS2 and Gazebo for simulating the TurtleBot3 robot, with the aim of exploring autonomous navigation capabilities. While the study did not achieve full autonomous navigation, it successfully established the connection between ROS2 and Gazebo and enabled manual simulation of the robot's movements. The primary objective was to understand how these tools can be integrated to support autonomous functions, providing valuable insights into the development process. The results of this work lay the groundwork for future research into autonomous robotics. The topic is particularly engaging for both teenagers and adults interested in discovering how robots function independently and the underlying technology involved. This research highlights the potential for further advancements in autonomous systems and serves as a stepping stone for more in-depth studies in the field., Comment: in Spanish language
- Published
- 2024
37. De la Extensi\'on a la Investigaci\'on: Como La Rob\'otica Estimula el Inter\'es Acad\'emico en Estudiantes de Grado
- Author
-
Flores, Gabriela, Mazondo, Ahilen, Moraes, Pablo, Sodre, Hiago, Peters, Christopher, Saravia, Victoria, Da Silva, Angel, Fernández, Santiago, de Vargas, Bruna, Kelbouscas, André, Grando, Ricardo, and Assunção, Nathalie
- Subjects
Computer Science - Computers and Society ,Computer Science - Robotics - Abstract
This research examines the impact of robotics groups in higher education, focusing on how these activities influence the development of transversal skills and academic motivation. While robotics goes beyond just technical knowledge, participation in these groups has been observed to significantly improve skills such as teamwork, creativity, and problem-solving. The study, conducted with the UruBots group, shows that students involved in robotics not only reinforce their theoretical knowledge but also increase their interest in research and academic commitment. These results highlight the potential of educational robotics to transform the learning experience by promoting active and collaborative learning. This work lays the groundwork for future research on how robotics can continue to enhance higher education and motivate students in their academic and professional careers, Comment: in Spanish language
- Published
- 2024
38. Configura\c{c}\~ao e opera\c{c}\~ao da plataforma Clearpath Husky A200 e manipulador Cobot UR5 2-finger gripper
- Author
-
Hiago, Sodre, Sebastian, Barcelona, Vincent, Sandin, Pablo, Moraes, Christopher, Peters, Angél, da Silva, Gabriela, Flores, Ahilen, Mazondo, Santiago, Fernández, Nathalie, Assunção, Bruna, de Vargas, Ricardo, Grando, and André, Kelbouscas
- Subjects
Computer Science - Robotics - Abstract
This article presents initial configuration work and use of the robotic platform and manipulator in question. The development of the ideal configuration for using this robot serves as a guide for new users and also validates its functionality for use in projects. Husky is a large payload capacity and power systems robotics development platform that accommodates a wide variety of payloads, customized to meet research needs. Together with the Cobot UR5 Manipulator attached to its base, it expands the application area of its capacity in projects. Advances in robots and mobile manipulators have revolutionized industries by automating tasks that previously required human intervention. These innovations alone increase productivity but also reduce operating costs, which makes the company more competitive in an evolving global market. Therefore, this article investigates the functionalities of this robot to validate its execution in robotics projects., Comment: in Portuguese language
- Published
- 2024
39. Intera\c{c}\~ao entre rob\^os humanoides: desenvolvendo a colabora\c{c}\~ao e comunica\c{c}\~ao aut\^onoma
- Author
-
Pablo, Moraes, Mónica, Rodríguez, Christopher, Peters, Hiago, Sodre, Ahilen, Mazondo, Vincent, Sandin, Sebastian, Barcelona, William, Moraes, Santiago, Fernández, Nathalie, Assunção, Bruna, de Vargas, Tobias, Dörnbach, André, Kelbouscas, and Ricardo, Grando
- Subjects
Computer Science - Robotics ,Computer Science - Computation and Language - Abstract
This study investigates the interaction between humanoid robots NAO and Pepper, emphasizing their potential applications in educational settings. NAO, widely used in education, and Pepper, designed for social interactions, of er new opportunities for autonomous communication and collaboration. Through a series of programmed interactions, the robots demonstrated their ability to communicate and coordinate actions autonomously, highlighting their potential as tools for enhancing learning environments. The research also explores the integration of emerging technologies, such as artificial intelligence, into these systems, allowing robots to learn from each other and adapt their behavior. The findings suggest that NAO and Pepper can significantly contribute to both technical learning and the development of social and emotional skills in students, of ering innovative pedagogical approaches through the use of humanoid robotics., Comment: in Portuguese language
- Published
- 2024
40. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
41. Vernacularizing Taxonomies of Harm is Essential for Operationalizing Holistic AI Safety
- Author
-
Kennedy, Wm. Matthew and Campos, Daniel Vargas
- Subjects
Computer Science - Computers and Society - Abstract
Operationalizing AI ethics and safety principles and frameworks is essential to realizing the potential benefits and mitigating potential harms caused by AI systems. To that end, actors across industry, academia, and regulatory bodies have created formal taxonomies of harm to support operationalization efforts. These include novel holistic methods that go beyond exclusive reliance on technical benchmarking. However, our paper argues that such taxonomies must also be transferred into local categories to be readily implemented in sector-specific AI safety operationalization efforts, and especially in underresourced or high-risk sectors. This is because many sectors are constituted by discourses, norms, and values that "refract" or even directly conflict with those operating in society more broadly. Drawing from emerging anthropological theories of human rights, we propose that the process of "vernacularization"--a participatory, decolonial practice distinct from doctrinary "translation" (the dominant mode of AI safety operationalization)--can help bridge this gap. To demonstrate this point, we consider the education sector, and identify precisely how vernacularizing a leading holistic taxonomy of harm leads to a clearer view of how harms AI systems may cause are substantially intensified when deployed in educational spaces. We conclude by discussing the generalizability of vernacularization as a useful AI safety methodology., Comment: Accepted to the Proceedings of the Conference on AI Ethics and Society (AIES), 2024
- Published
- 2024
42. Magnetic susceptibility and entanglement of three interacting qubits under magnetic field and anisotropy
- Author
-
Castorene, Bastian, Peña, Francisco J., Norambuena, Ariel, Ulloa, Sergio E., Araya, Cristobal, and Vargas, Patricio
- Subjects
Condensed Matter - Statistical Mechanics - Abstract
This work investigates a system of three entangled qubits within the XXX model, subjected to an external magnetic field in the $z$-direction and incorporating an anisotropy term along the $y$-axis. We explore the thermodynamics of the system by calculating its magnetic susceptibility and analyzing how this quantity encodes information about entanglement. By deriving rigorous bounds for susceptibility, we demonstrate that their violation serves as an entanglement witness. Our results show that anisotropy enhances entanglement, extending the temperature range over which it persists. Additionally, by tracing over the degrees of freedom of two qubits, we examine the reduced density matrix of the remaining qubits and find that its entropy under the influence of the magnetic field can be mapped to an effective thermal bath at $(B,K) > 0$ K., Comment: 6 Figures
- Published
- 2024
43. Ultra-High-Energy Gamma-Ray Bubble around Microquasar V4641 Sgr
- Author
-
Alfaro, R., Alvarez, C., Arteaga-Velázquez, J. C., Rojas, D. Avila, Solares, H. A. Ayala, Babu, R., Belmont-Moreno, E., Caballero-Mora, K. S., Capistrán, T., Carramiñana, A., Casanova, S., Cotti, U., Cotzomi, J., de León, S. Coutiño, De la Fuente, E., Depaoli, D., Di Lalla, N., Hernandez, R. Diaz, Dingus, B. L., DuVernois, M. A., Durocher, M., Díaz-Vélez, J. C., Engel, K., Espinoza, C., Fan, K. L., Fang, K., Fraija, N., Fraija, S., García-González, J. A., Garfias, F., Muñoz, A. Gonzalez, González, M. M., Goodman, J. A., Groetsch, S., Harding, J. P., Herzog, I., Hinton, J., Huang, D., Hueyotl-Zahuantitla, F., Hüntemeyer, P., Iriarte, A., Joshi, V., Kaufmann, S., Kieda, D., de León, C., Lee, J., Vargas, H. León, Linnemann, J. T., Longinotti, A. L., Luis-Raya, G., Malone, K., Martinez, O., Martínez-Castro, J., Matthews, J. A., Miranda-Romagnoli, P., Morales-Soto, J. A., Moreno, E., Mostafá, M., Nayerhoda, A., Nellen, L., Newbold, M., Nisa, M. U., Noriega-Papaqui, R., Olivera-Nieto, L., Omodei, N., Osorio, M., Araujo, Y. Pérez, Pérez-Pérez, E. G., Rho, C. D., Rosa-González, D., Ruiz-Velasco, E., Salazar, H., Salazar-Gallegos, D., Sandoval, A., Schneider, M., Serna-Franco, J., Smith, A. J., Son, Y., Springer, R. W., Tibolla, O., Tollefson, K., Torres, I., Torres-Escobedo, R., Turner, R., Ureña-Mena, F., Varela, E., Villaseñor, L., Wang, X., Watson, I. J., Willox, E., Yun-Cárcamo, S., and Zhou, H.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Microquasars are laboratories for the study of jets of relativistic particles produced by accretion onto a spinning black hole. Microquasars are near enough to allow detailed imaging of spatial features across the multiwavelength spectrum. The recent extension of the spatial morphology of a microquasar, SS 433, to TeV gamma rays \cite{abeysekara2018very} localizes the acceleration of electrons at shocks in the jet far from the black hole \cite{hess2024ss433}. Here we report TeV gamma-ray emission from another microquasar, V4641~Sgr, which reveals particle acceleration at similar distances from the black hole as SS~433. Additionally, the gamma-ray spectrum of V4641 is among the hardest TeV spectra observed from any known gamma-ray source and is detected up to 200 TeV. Gamma rays are produced by particles, either electrons or hadrons, of higher energies. Because electrons lose energy more quickly the higher their energy, such a spectrum either very strongly constrains the electron production mechanism or points to the acceleration of high-energy hadrons. This observation suggests that large-scale jets from microquasars could be more common than previously expected and that microquasars could be a significant source of Galactic cosmic rays. high energy gamma-rays also provide unique constraints on the acceleration mechanisms of extra-Galactic cosmic rays postulated to be produced by the supermassive black holes and relativistic jets of quasars. The distance to quasars limits imaging studies due to insufficient angular resolution of gamma-rays and due to attenuation of the highest energy gamma-rays by the extragalactic background light.
- Published
- 2024
- Full Text
- View/download PDF
44. GFlowNets for Hamiltonian decomposition in groups of compatible operators
- Author
-
Huidobro-Meezs, Isaac L., Dai, Jun, Rabusseau, Guillaume, and Vargas-Hernández, Rodrigo A.
- Subjects
Quantum Physics ,Computer Science - Machine Learning - Abstract
Quantum computing presents a promising alternative for the direct simulation of quantum systems with the potential to explore chemical problems beyond the capabilities of classical methods. However, current quantum algorithms are constrained by hardware limitations and the increased number of measurements required to achieve chemical accuracy. To address the measurement challenge, techniques for grouping commuting and anti-commuting terms, driven by heuristics, have been developed to reduce the number of measurements needed in quantum algorithms on near-term quantum devices. In this work, we propose a probabilistic framework using GFlowNets to group fully (FC) or qubit-wise commuting (QWC) terms within a given Hamiltonian. The significance of this approach is demonstrated by the reduced number of measurements for the found groupings; 51% and 67% reduction factors respectively for FC and QWC partitionings with respect to greedy coloring algorithms, highlighting the potential of GFlowNets for future applications in the measurement problem. Furthermore, the flexibility of our algorithm extends its applicability to other resource optimization problems in Hamiltonian simulation, such as circuit design., Comment: 8 pages, 2 figures. Accepted for Machine Learning and the Physical Sciences Workshop, NeurIPS 2024. Submission Number: 167
- Published
- 2024
45. Towards Designing Scalable Quantum-Enhanced Generative Networks for Neutrino Physics Experiments with Liquid Argon Time Projection Chambers
- Author
-
Delgado, Andrea, Venegas-Vargas, Diego, Huynh, Adam, and Carroll, Kevon
- Subjects
Quantum Physics ,High Energy Physics - Experiment - Abstract
Generative modeling for high-resolution images in Liquid Argon Time Projection Chambers (LArTPC), used in neutrino physics experiments, presents significant challenges due to the complexity and sparsity of the data. This work explores the application of quantum-enhanced generative networks to address these challenges, focusing on the scaling of models to handle larger image sizes and avoid the often encountered problem of mode collapse. To counteract mode collapse, regularization methods were introduced and proved to be successful on small-scale images, demonstrating improvements in stabilizing the training process. Although mode collapse persisted in higher-resolution settings, the introduction of these techniques significantly enhanced the model's performance in lower-dimensional cases, providing a strong foundation for further exploration. These findings highlight the potential for quantum-enhanced generative models in LArTPC data generation and offer valuable insights for the future development of scalable hybrid quantum-classical solutions in nuclear and high-energy physics., Comment: 10 pages, 8 figures
- Published
- 2024
46. The Simplicity of Optimal Dynamic Mechanisms
- Author
-
Correa, Jose, Cristi, Andres, and Koch, Laura Vargas
- Subjects
Economics - Theoretical Economics ,Computer Science - Computer Science and Game Theory ,91B03, 91B26 - Abstract
A fundamental economic question is that of designing revenue-maximizing mechanisms in dynamic environments. This paper considers a simple yet compelling market model to tackle this question, where forward-looking buyers arrive at the market over discrete time periods, and a monopolistic seller is endowed with a limited supply of a single good. In the case of i.i.d. and regular valuations for the buyers, Board and Skrzypacz (2016) characterized the optimal mechanism and proved the optimality of posted prices in the continuous-time limit. Our main result considers the limit case of a continuum of buyers, establishing that for arbitrary independent buyers' valuations, posted prices and capacity rationing can implement the optimal anonymous mechanism. Our result departs from the literature in three ways: It does not make any regularity assumptions, it considers the case of general, not necessarily i.i.d., arrivals, and finally, not only posted prices but also capacity rationing takes part in the optimal mechanism. Additionally, if supply is unlimited, we show that the rationing effect vanishes, and the optimal mechanism can be implemented using posted prices only, \`a la Board (2008)., Comment: none
- Published
- 2024
47. State-space analysis of a continuous gravitational wave source with a pulsar timing array: inclusion of the pulsar terms
- Author
-
Kimpson, Tom, Melatos, Andrew, O'Leary, Joseph, Carlin, Julian B., Evans, Robin J., Moran, William, Cheunchitra, Tong, Dong, Wenhao, Dunn, Liam, Greentree, Julian, O'Neill, Nicholas J., Suvorova, Sofia, Thong, Kok Hong, and Vargas, Andrés F.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,General Relativity and Quantum Cosmology - Abstract
Pulsar timing arrays can detect continuous nanohertz gravitational waves emitted by individual supermassive black hole binaries. The data analysis procedure can be formulated within a time-domain, state-space framework, in which the radio timing observations are related to a temporal sequence of latent states, namely the intrinsic pulsar spin frequency. The achromatic wandering of the pulsar spin frequency is tracked using a Kalman filter concurrently with the pulse frequency modulation induced by a gravitational wave from a single source. The modulation is the sum of terms proportional to the gravitational wave strain at the Earth and at every pulsar in the array. Here we generalize previous state-space formulations of the pulsar timing array problem to include the pulsar terms; that is, we copy the pulsar terms from traditional, non-state-space analyses over to the state-space framework. The performance of the generalized Kalman filter is tested using astrophysically representative software injections in Gaussian measurement noise. It is shown that including the pulsar terms corrects for previously identified biases in the parameter estimates (especially the sky position of the source) which also arise in traditional matched-filter analyses that exclude the pulsar terms. Additionally, including the pulsar terms decreases the minimum detectable strain by $14\%$. Overall, the study verifies that the pulsar terms do not raise any special extra impediments for the state-space framework, beyond those studied in traditional analyses. The inspiral-driven evolution of the wave frequency at the Earth and at the retarded time at every pulsar in the array is also investigated., Comment: 24 pages, 13 figures. Accepted for publication in MNRAS. arXiv admin note: text overlap with arXiv:2409.14613
- Published
- 2024
48. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
49. Deep End-to-End Survival Analysis with Temporal Consistency
- Author
-
Vieyra, Mariana Vargas and Frossard, Pascal
- Subjects
Computer Science - Machine Learning - Abstract
In this study, we present a novel Survival Analysis algorithm designed to efficiently handle large-scale longitudinal data. Our approach draws inspiration from Reinforcement Learning principles, particularly the Deep Q-Network paradigm, extending Temporal Learning concepts to Survival Regression. A central idea in our method is temporal consistency, a hypothesis that past and future outcomes in the data evolve smoothly over time. Our framework uniquely incorporates temporal consistency into large datasets by providing a stable training signal that captures long-term temporal relationships and ensures reliable updates. Additionally, the method supports arbitrarily complex architectures, enabling the modeling of intricate temporal dependencies, and allows for end-to-end training. Through numerous experiments we provide empirical evidence demonstrating our framework's ability to exploit temporal consistency across datasets of varying sizes. Moreover, our algorithm outperforms benchmarks on datasets with long sequences, demonstrating its ability to capture long-term patterns. Finally, ablation studies show how our method enhances training stability.
- Published
- 2024
50. Challenges of the QWERTY Keyboard for Quechua Speakers in the Puno Region in Per\'u
- Author
-
Juarez-Vargas, Henry, Mansilla-Huanacuni, Roger Mijael, and Torres-Cruz, Fred
- Subjects
Computer Science - Human-Computer Interaction - Abstract
The widespread adoption of the QWERTY keyboard layout, designed primarily for English, presents significant challenges for speakers of indigenous languages such as Quechua, particularly in the Puno region of Peru. This research examines the extent to which the QWERTY layout affects the writing and digital communication of Quechua speakers. Through an analysis of the Quechua languages unique alphabet and character frequency, combined with insights from local speakers, we identify the limitations imposed by the QWERTY system on the efficient digital transcription of Quechua. The study further proposes alternative keyboard layouts, including optimizations of QWERTY and DVORAK, designed to enhance typing efficiency and reduce the digital divide for Quechua speakers. Our findings underscore the need for localized technological solutions to preserve linguistic diversity while improving digital literacy for indigenous communities. The proposed modifications offer a pathway toward more inclusive digital tools that respect and accommodate linguistic diversity.
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.