79 results on '"u-invariant"'
Search Results
2. Square-reflexive polynomials.
- Author
-
Becher, Karim Johannes and Gupta, Parul
- Abstract
For a field E of characteristic different from 2 and cohomological 2-dimension one, quadratic forms over the rational function field E (X) are studied. A characterisation in terms of polynomials in E [ X ] is obtained for having that quadratic forms over E (X) satisfy a local-global principle with respect to discrete valuations that are trivial on E. In this way new elementary proofs for the local-global principle are achieved in the cases where E is finite or pseudo-algebraically closed. The study is complemented by various examples. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. Diagonal forms of higher degree over function fields of p-adic curves.
- Author
-
Pumplün, S.
- Subjects
- *
P-adic analysis , *CURVES , *FINITE fields , *VALUATION - Abstract
We investigate diagonal forms of degree d over the function field F of a smooth projective p -adic curve: if a form is isotropic over the completion of F with respect to each discrete valuation of F , then it is isotropic over certain fields F U , F P and F p . These fields appear naturally when applying the methodology of patching; F is the inverse limit of the finite inverse system of fields { F U , F P , F p }. Our observations complement some known bounds on the higher u -invariant of diagonal forms of degree d. We only consider diagonal forms of degree d over fields of characteristic not dividing d !. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
4. THE un-INVARIANT AND THE SYMBOL LENGTH OF Hn2(F).
- Author
-
CHAPMAN, ADAM and MCKINNIE, KELLY
- Subjects
- *
INVARIANTS (Mathematics) , *ANISOTROPY , *MATHEMATICAL functions , *ALGEBRA , *MATHEMATICAL analysis - Abstract
Given a field F of char(F) = 2, we define un(F) to be the maximal dimension of an anisotropic form in Inq F. For n = 1 it recaptures the definition of u(F). We study the relations between this value and the symbol length of Hn2 (F), denoted by sln2(F). We show for any n ≥ 2 that if 2n ≤ un(F) ≤ u²(F) < ∞, then sln2 (F) ≤ Πni=2(ui(F)/2 + 1 - 2i-1). As a result, if u(F) is finite, then sln2 (F) is finite for any n, a fact which was previously proven when char(F) ≠ 2 by Saltman and Krashen. We also show that if sln2(F) = 1, then un(F) is either 2n or 2n+1. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
5. HERMITIAN u-INVARIANTS OVER FUNCTION FIELDS OF p-ADIC CURVES.
- Author
-
Zhengyao Wu
- Subjects
- *
HERMITIAN operators , *DIFFERENTIAL invariants , *ALGEBRA , *DISCRETE geometry , *AUTOMORPHISM groups - Abstract
Let p be an odd prime. Let F be the function field of a p-adic curve. Let A be a central simple algebra of period 2 over F with an involution σ. There are known upper bounds for the u-invariant of hermitian forms over (A, σ). In this article we compute the exact values of the u-invariant of hermitian forms over (A, σ). [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
6. On 'horizontal' invariants attached to quadratic forms
- Author
-
Kahn, Bruno and Tandon, Rajat, editor
- Published
- 2005
- Full Text
- View/download PDF
7. Differential forms, linked fields, and the u-invariant.
- Author
-
Chapman, Adam and Dolphin, Andrew
- Abstract
We associate an Albert form to any pair of cyclic algebras of prime degree p over a field F with $${\text {char}}(F)=p$$ which coincides with the classical Albert form when $$p=2$$ . We prove that if every Albert form is isotropic, then $$H^4(F)=0$$ . As a result, we obtain that if F is a linked field with $${\text {char}}(F)=2$$ , then its u-invariant is either 0, 2, 4, or 8. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
8. Variations on a theme of rationality of cycles
- Author
-
Karpenko Nikita
- Subjects
14c25 ,11e04 ,chow groups ,quadrics ,steenrod operations ,u-invariant ,Mathematics ,QA1-939 - Published
- 2013
- Full Text
- View/download PDF
9. Fibers of flat morphisms and Weierstrass preparation theorem.
- Author
-
Đoàn, Trung Cườ̀ng
- Subjects
- *
MORPHISMS (Mathematics) , *FIBERS , *WEIERSTRASS points , *MATHEMATICAL proofs , *COMMUTATIVE rings - Abstract
Abstract: We characterize flat extensions of commutative rings satisfying the Weierstrass preparation theorem. Using this characterization we prove a variant of the Weierstrass preparation theorem for rings of functions on a normal curve over a complete local domain of dimension one. This generalizes recent works of Harbater, Hartmann and Krashen with a different method of proof. [Copyright &y& Elsevier]
- Published
- 2014
- Full Text
- View/download PDF
10. Generalised quadratic forms and the u-invariant
- Author
-
Andrew Dolphin
- Subjects
Pure mathematics ,u-invariant ,01 natural sciences ,0103 physical sciences ,FOS: Mathematics ,u-Invariant ,0101 mathematics ,Quaternion ,ALGEBRAS ,Mathematics ,INVOLUTIONS ,Algebra and Number Theory ,Quaternion algebra ,CHARACTERISTIC-2 ,Quaternion algebras ,010102 general mathematics ,Mathematics - Rings and Algebras ,Hermitian forms ,FIELDS ,Hermitian matrix ,Infimum and supremum ,Mathematics and Statistics ,Rings and Algebras (math.RA) ,Characteristic two ,11E39, 11E81, 12F05, 12F10 ,Division algebra ,Mathematics::Differential Geometry ,010307 mathematical physics ,Central simple algebras ,Generalised quadratic forms - Abstract
The u-invariant of a field is the supremum of the dimensions of anisotropic quadratic forms over the field. We define corresponding u-invariants for hermitian and generalised quadratic forms over a division algebra with involution in characteristic 2 and investigate the relationships between them. We also investigate these invariants in the case of a quaternion algebra and in particular when this quaternion algebra is the unique quaternion division algebra over a field., 20 pages
- Published
- 2018
- Full Text
- View/download PDF
11. On the u-invariant of hermitian forms.
- Author
-
PARIHAR, SUDEEP and SURESH, V
- Subjects
MATHEMATICAL invariants ,HERMITIAN forms ,ALGEBRAIC field theory ,MATHEMATICAL bounds ,MATHEMATICAL forms ,TENSOR products - Abstract
Let K be a field of characteristic not 2 and A a central simple algebra with an involution σ. A result of Mahmoudi provides an upper bound for the u-invariants of hermitian forms and skew-hermitian forms over ( A, σ) in terms of the u-invariant of K. In this paper we give a different upper bound when A is a tensor product of quaternion algebras and σ is a the tensor product of canonical involutions. We also show that our bounds are sharper than those of Mahmoudi. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
12. Variations on a theme of rationality of cycles.
- Author
-
Karpenko, Nikita
- Abstract
We prove certain weak versions of some celebrated results due to Alexander Vishik comparing rationality of algebraic cycles over the function field of a quadric and over the base field. The original proofs use Vishik's symmetric operations in the algebraic cobordism theory and work only in characteristic 0. Our proofs use the modulo 2 Steenrod operations in the Chow theory and work in any characteristic ≠ 2. Our weak versions are still sufficient for existing applications. In particular, Vishik's construction of fields of u-invariant 2 + 1, for r ≥ 3, is extended to arbitrary characteristic ≠ 2. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
13. Invariants of a maximal unipotent subgroup and equidimensionality
- Author
-
Panyushev, Dmitri I.
- Subjects
- *
INVARIANTS (Mathematics) , *MAXIMA & minima , *GROUP theory , *DIMENSIONAL analysis , *PROOF theory , *MORPHISMS (Mathematics) - Abstract
Abstract: Let U be a maximal unipotent subgroup of a semisimple group G. If G acts on an affine variety X, then it was proved by Hadžiev (1967) that there is a finitely generated -algebra such that . It follows that is finitely generated. This note contains two contributions to the theory of U-invariants. First, we obtain a relationship between the fibres of the quotient morphisms and that contain T-fixed points. (Here is a maximal torus of G.) For X conical, this implies that is equidimensional if and only if is. Second, we give a criterion of equidimensionality of for a class of varieties with a dense G-orbit (the so-called -varieties of Vinberg and Popov). [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
14. ON HERMITIAN PFISTER FORMS.
- Author
-
GRENIER-BOLEY, NICOLAS, LEQUEU, EMMANUEL, and MAHMOUDI, MOHAMMAD GHOLAMZADEH
- Subjects
- *
HERMITIAN forms , *MATHEMATICAL forms , *ALGEBRAIC fields , *PFISTER forms , *NUMBER theory - Abstract
Let K be a field of characteristic different from 2. It is known that a quadratic Pfister form over K is hyperbolic once it is isotropic. It is also known that the dimension of an anisotropic quadratic form over K belonging to a given power of the fundamental ideal of the Witt ring of K is lower bounded. In this paper, weak analogues of these two statements are proved for hermitian forms over a multiquaternion algebra with involution. Consequences for Pfister involutions are also drawn. An invariant uα of K with respect to a nonzero pure quaternion of a quaternion division algebra over K is defined. Upper bounds for this invariant are provided. In particular an analogue is obtained of a result of Elman and Lam concerning the u-invariant of a field of level at most 2. [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF
15. Recollement sur les Espaces de Berkovich et Principe Local-Global
- Author
-
Mehmeti, Vlere, Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Normandie Université, and Jérôme Poineau
- Subjects
U-invariant ,Patching ,Recollement ,Berkovich spaces ,Courbes de Berkovich ,Berkovich curves ,Géométrie analytique non-archimédienne ,Ourbes analytiques relatives ,Principe local-global ,Field patching ,Meromorphic functions ,Relative analytic curves ,Local-global principle ,Non-Archimedean analytic geometry ,Recollement sur les corps ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,Quadratic forms ,Valuations - Abstract
Field patching, introduced by Harbater and Hartmann, and extended by the aforementioned authors and Krashen, has recently seen numerous applications. We present an extension of this technique to the setting of Berkovich analytic geometry and applications to the local-global principle.In particular, we show that this adaptation of patching can be applied to Berkovich analytic curves, and as a consequence obtain local-global principles over function fields of curves defined over complete ultrametric fields. Because of the connection between the points of a Berkovich analytic curve and the valuations that its function field can be endowed with, one of these local-global principles is given with respect to completions, thus evoking some similarity with more classical versions. As an application, we obtain local-global principles for quadratic forms and results on the u-invariant. These findings generalize those of Harbater, Hartmann and Krashen.As a starting point for higher-dimensional patching in the Berkovich setting, we show that this technique is applicable around certain fibers of a relative Berkovich analytic curve. As a consequence, we prove a local-global principle over the germs of meromorphic functions on said fibers. By showing that said germs of meromorphic functions are algebraic, we also obtain local-global principles over function fields of algebraic curves defined over a larger class of ultrametric fields.; Le recollement sur les corps, introduit par Harbater et Hartmann, et étendu par ces auteurs et Krashen, a récemment trouvé de nombreuses applications. Nous présentons ici une extension de cette technique au cadre de la géométrie analytique de Berkovich et des applications au principe local-global.Nous montrons que cette adaptation du recollement peut s'appliquer aux courbes analytiques de Berkovich, et par conséquent obtenons des principes locaux-globaux sur les corps de fonctions de courbes définies sur des corps ultramétriques complets. Grâce à la connexion entre les points d'une courbe analytique de Berkovich et les valuations dont on peut munir son corps de fonctions, nous obtenons un principe local-global par rapport à des complétés du corps de fonctions considéré, ce qui présente une ressemblance avec des versions plus classiques. En application, nous établissons des principes locaux-globaux dans le cas plus précis des formes quadratiques et en déduisons des bornes sur l'u-invariant de certains corps. Nos résultats généralisent ceux de Harbater, Hartmann et Krashen.Comme point de départ pour le recollement en dimension supérieure dans un cadre d'espaces de Berkovich, nous montrons que cette technique peut s'appliquer autour de certaines fibres d'une courbe analytique relative. Nous l'utilisons ensuite pour démontrer un principe local-global sur les germes des fonctions méromorphes sur ces fibres. En montrant que ces germes de fonctions méromorphes sont algébriques, nous obtenons aussi des principes locaux-globaux sur les corps de fonctions des courbes algébriques définies sur une famille plus vaste de corps ultramétriques.
- Published
- 2019
16. Patching over Berkovich curves and quadratic forms
- Author
-
Vlerë Mehmeti, Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), and Mehmeti, Vlerë
- Subjects
Pure mathematics ,u-invariant ,Context (language use) ,Field (mathematics) ,14G22, 11E08 ,01 natural sciences ,Mathematics - Algebraic Geometry ,Analytic geometry ,Simple (abstract algebra) ,0103 physical sciences ,FOS: Mathematics ,Number Theory (math.NT) ,0101 mathematics ,Algebraic Geometry (math.AG) ,Mathematics ,Algebra and Number Theory ,Mathematics - Number Theory ,010102 general mathematics ,Isotropy ,[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG] ,Mathematics - Rings and Algebras ,Function (mathematics) ,16. Peace & justice ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] ,Rings and Algebras (math.RA) ,010307 mathematical physics ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] - Abstract
We extend field patching to the setting of Berkovich analytic geometry and use it to prove a local-global principle over function fields of analytic curves with respect to completions. In the context of quadratic forms, we combine it with sufficient conditions for local isotropy over a Berkovich curve to obtain applications on the u-invariant. The patching method we adapt was introduced by Harbater and Hartmann in [18], and further developed by these two authors and Krashen in [19]. The results presented in this paper generalize those of [19] on the local-global principle and quadratic forms., Recollement sur les courbes de Berkovich et formes quadratiques. Nous étendons la technique de recollement sur les corps au cadre de la géométrie ana-lytique de Berkovich pour démontrer un principe local-global sur les corps de fonctions de courbes analytiques par rapport à certains de leurs complétés. Dans le contexte des formes quadratiques, nous le combinons avec des conditions suffisantes d'isotropie locale sur une courbe de Berkovich pour obtenir des applications au u-invariant. La méthode de recollement que nous adaptons a été introduite par Harbater et Hartmann dans [18], puis développée par ces deux auteurs et Krashen dans [19]. Dans ce texte, nous présentons des résultats sur le principe local-global et les formes quadratiques qui généralisent ceux de [19].
- Published
- 2019
- Full Text
- View/download PDF
17. Some versions of the U-invariant of a field
- Author
-
A.S. Sivatski
- Subjects
Algebra and Number Theory ,Field (physics) ,u-invariant ,Mathematics ,Mathematical physics - Published
- 2021
- Full Text
- View/download PDF
18. Finite Sampling in Multiple Generated <tex-math notation='LaTeX'>$U$ </tex-math> -Invariant Subspaces
- Author
-
Antonio G. García, H. R. Fernández-Morales, María José Muñoz-Bouzo, and Alejandro Ortega
- Subjects
Discrete mathematics ,Euclidean space ,010102 general mathematics ,Hilbert space ,Sampling (statistics) ,u-invariant ,020206 networking & telecommunications ,02 engineering and technology ,Library and Information Sciences ,01 natural sciences ,Linear subspace ,Electronic mail ,Computer Science Applications ,symbols.namesake ,0202 electrical engineering, electronic engineering, information engineering ,symbols ,Unitary operator ,0101 mathematics ,Invariant (mathematics) ,Information Systems ,Mathematics - Abstract
The relevance in a sampling theory of $U$ -invariant subspaces of a Hilbert space $\mathcal {H}$ , where $U$ denotes a unitary operator on $\mathcal {H}$ , is nowadays a recognized fact. Indeed, shift-invariant subspaces of $L^{2}(\mathbb {R})$ become a particular example; periodic extensions of finite signals also provide a remarkable example. As a consequence, the availability of an abstract $U$ -sampling theory becomes a useful tool to handle these problems. In this paper, we derive a sampling theory for finite dimensional multiple generated $U$ -invariant subspaces of a Hilbert space $\mathcal {H}$ . As the involved samples are identified as frame coefficients in a suitable euclidean space, the relevant mathematical technique is that of the finite frame theory. Since finite frames are nothing but spanning sets of vectors, the used technique naturally meets matrix analysis.
- Published
- 2016
- Full Text
- View/download PDF
19. u-Invariants for forms of higher degree.
- Author
-
Pumplün, S.
- Subjects
QUADRATIC forms ,SURVEYS ,MATHEMATICAL geography ,INVARIANTS (Mathematics) - Abstract
Abstract: Both a general and a diagonal u-invariant for forms of higher degree are defined, generalizing the u-invariant of quadratic forms. We give a survey of both old and new results on these u-invariants. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
20. Annular rearrangements, incompressible axi-symmetric whirls and L1-local minimisers of the distortion energy
- Author
-
Ali Taheri and Charles Morris
- Subjects
Applied Mathematics ,010102 general mathematics ,u-invariant ,Space (mathematics) ,01 natural sciences ,010101 applied mathematics ,Combinatorics ,Distortion (mathematics) ,Sobolev space ,Domain (ring theory) ,Homogeneous space ,Nabla symbol ,0101 mathematics ,QA ,Analysis ,Energy (signal processing) ,Mathematics - Abstract
In this paper we consider a variational problem consisting of an energy functional defined by the integral, $$\begin{aligned} \mathbb {F}[u,\mathbf{X}] = \frac{1}{2}\int _{\mathbf{X}} \frac{|\nabla u|^2}{|u|^2} \,dx, \end{aligned}$$ and an associated mapping space, here, the space of incompressible Sobolev mappings of the symmetric annular domain in the Euclidean n-space $$\mathbf{X}= \lbrace x \in {\mathbb {R}}^n{:}\,a
- Published
- 2018
21. Some versions of the U-invariant of a field.
- Author
-
Sivatski, A.S.
- Subjects
- *
SUM of squares , *CHAR - Abstract
Let F be a field, char F ≠ 2. Assume that a 1 , ... a n ∈ F ⁎ are such that a ‾ 1 , ... a ‾ n ∈ F ⁎ / F ⁎ 2 are linearly independent over Z / 2 Z. As usual W (F) stands for the Witt ring of F. For an element φ ∈ W (F) denote by dim φ the dimension of the corresponding anisotropic quadratic form. Define u ˆ (F ; a 1 , ... , a n) as the maximum of dim φ , where φ runs over the set of elements in W (F) , which become zero in W (F ( a 1 , ... , a n )). This is a version of the classical notion of the u -invariant u (F) of the field F. It turns out that u ˆ (F ; a 1 , ... , a n) ≤ α n ∑ i = 1 n u ˆ (F ; a i) for any n ≥ 2 , where the sequence α n is defined recurrently as α 2 = 1 , and α n = 5 2 (n − 1) α n − 1 + 1 n. We compute u ˆ (F ; a) in certain cases, and show that u ˆ (F (b) ; a) ≤ 5 2 u ˆ (F ; a) , where b ∈ F ⁎. However, in general there is no lower bound for u ˆ (F (b) ; a) via u ˆ (F ; a) , even though we prove that max { u ˆ (F (b) ; a) , u ˆ (F (a b) ; a) } ≥ 1 3 u ˆ (F ; a). Let u ˆ (F) be the maximum of u ˆ (F ; a) , where a runs over all elements of F ⁎ ∖ F ⁎ 2. We show that u ˆ (F (b)) ≥ 1 4 u ˆ (F) if b is a sum of two squares. In particular, the last inequality holds if − 1 ∈ F ⁎. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
22. On the u-invariant of function fields of curves over complete discretely valued fields
- Author
-
V. Suresh and Raman Parimala
- Subjects
Pure mathematics ,General Mathematics ,Mathematics::Rings and Algebras ,u-invariant ,Field (mathematics) ,Mathematics - Rings and Algebras ,Function (mathematics) ,Rings and Algebras (math.RA) ,Mathematics::K-Theory and Homology ,Residue field ,Bounded function ,FOS: Mathematics ,Uniform boundedness ,Rings and Algebras, Algebraic Geometry, Number theory ,Function field ,Brauer group ,Mathematics - Abstract
Let K be a complete discretely valued field with residue field k. If char(K) = 0, char(k) = 2 and the 2-rank of k is d, we prove that there exists an integer N depending on d such that the u-invariant of any function field in one variable over K is bounded by N. The method of proof is via introducing the notion of uniform boundedness for the p-torsion of the Brauer group of a field and relating the uniform boundedness of the 2-torsion of the Brauer group to finiteness of the u-invariant. We prove that the 2-torsion of the Brauer group of function fields in one variable over K are uniformly bounded., 11 pages
- Published
- 2015
- Full Text
- View/download PDF
23. Sampling-related frames in finite U-invariant subspaces
- Author
-
María José Muñoz-Bouzo and Antonio G. García
- Subjects
Informática ,Discrete mathematics ,Pure mathematics ,Euclidean space ,Applied Mathematics ,u-invariant ,Invariant (physics) ,Linear subspace ,Moore-Penrose pseudo-inverse ,Sampling theory ,U-invariant subspaces ,Unitary operator ,Finite frame ,Dual frames ,Stationary sequences ,Separable hilbert space ,Mathematics - Abstract
Recently, a sampling theory for infinite dimensional U -invariant subspaces of a separable Hilbert space H where U denotes a unitary operator on H has been obtained. Thus, uniform average sampling for shift-invariant subspaces of L 2 ( R ) becomes a particular example. As in the general case it is possible to have finite dimensional U -invariant subspaces, the main aim of this paper is to derive a sampling theory for finite dimensional U -invariant subspaces of a separable Hilbert space H . Since the used samples are frame coefficients in a suitable euclidean space C N , the problem reduces to obtain dual frames with a U -invariance property.
- Published
- 2015
- Full Text
- View/download PDF
24. Diagonal forms of higher degree over function fields of $p$-adic curves
- Author
-
S. Pumplün
- Subjects
Pure mathematics ,Algebra and Number Theory ,Degree (graph theory) ,Mathematics - Number Theory ,Computer Science::Information Retrieval ,Mathematics::Number Theory ,010102 general mathematics ,Isotropy ,Diagonal ,Astrophysics::Instrumentation and Methods for Astrophysics ,u-invariant ,Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) ,0102 computer and information sciences ,Function (mathematics) ,01 natural sciences ,Mathematics - Algebraic Geometry ,010201 computation theory & mathematics ,FOS: Mathematics ,Computer Science::General Literature ,Number Theory (math.NT) ,0101 mathematics ,Discrete valuation ,Algebraic Geometry (math.AG) ,Function field ,Mathematics - Abstract
We investigate diagonal forms of degree $d$ over the function field $F$ of a smooth projective $p$-adic curve: if a form is isotropic over the completion of $F$ with respect to each discrete valuation of $F$, then it is isotropic over certain fields $F_U$, $F_P$ and $F_p$. These fields appear naturally when applying the methodology of patching; $F$ is the inverse limit of the finite inverse system of fields $\{F_U,F_P,F_p\}$. Our observations complement some known bounds on the higher $u$-invariant of diagonal forms of degree $d$. We only consider diagonal forms of degree $d$ over fields of characteristic not dividing $d!$., Comment: Some small corrections/changes have been done with respect to the first version
- Published
- 2017
- Full Text
- View/download PDF
25. Differential forms, linked fields, and the u-invariant
- Author
-
Adam Chapman and Andrew Dolphin
- Subjects
QUADRATIC-FORMS ,Pure mathematics ,Differential form ,General Mathematics ,u-invariant ,Field (mathematics) ,Commutative Algebra (math.AC) ,01 natural sciences ,0103 physical sciences ,FOS: Mathematics ,LINKAGE ,u-Invariant ,0101 mathematics ,Quadratic forms ,ALGEBRAS ,Mathematics ,Discrete mathematics ,Fields of finite characteristic ,010102 general mathematics ,Isotropy ,Prime degree ,Mathematics - Rings and Algebras ,Mathematics - Commutative Algebra ,Differential forms ,Linked fields ,Mathematics and Statistics ,Rings and Algebras (math.RA) ,11E81 (primary), 11E04, 16K20 (secondary) ,010307 mathematical physics - Abstract
We associate an Albert form to any pair of cyclic algebras of prime degree p over a field F with $${\text {char}}(F)=p$$ which coincides with the classical Albert form when $$p=2$$ . We prove that if every Albert form is isotropic, then $$H^4(F)=0$$ . As a result, we obtain that if F is a linked field with $${\text {char}}(F)=2$$ , then its u-invariant is either 0, 2, 4, or 8.
- Published
- 2017
26. Fibers of flat morphisms and Weierstrass preparation theorem
- Author
-
Trung Cườ̀ng Đoàn
- Subjects
Normal distribution ,Pure mathematics ,Algebra and Number Theory ,Morphism ,Dimension (graph theory) ,Local domain ,Weierstrass preparation theorem ,u-invariant ,Commutative ring ,Characterization (mathematics) ,Mathematics - Abstract
We characterize flat extensions of commutative rings satisfying the Weierstrass preparation theorem. Using this characterization we prove a variant of the Weierstrass preparation theorem for rings of functions on a normal curve over a complete local domain of dimension one. This generalizes recent works of Harbater, Hartmann and Krashen with a different method of proof.
- Published
- 2014
- Full Text
- View/download PDF
27. SIMULTANEOUS ZEROS OF A SYSTEM OF TWO QUADRATIC FORMS
- Author
-
Sahajpal, Nandita
- Subjects
- Quadratic Form, Local Field, Global Field, Simultaneous Zeros, u-invariant, Algebra, Number Theory
- Abstract
In this dissertation we investigate the existence of a nontrivial solution to a system of two quadratic forms over local fields and global fields. We specifically study a system of two quadratic forms over an arbitrary number field. The questions that are of particular interest are: How many variables are necessary to guarantee a nontrivial zero to a system of two quadratic forms over a global field or a local field? In other words, what is the u-invariant of a pair of quadratic forms over any global or local field? What is the relation between u-invariants of a pair of quadratic forms over any global field and the local fields associated with it? How is the u-invariant of a pair of quadratic forms over any global field related to the u-invariant of its residue field? There are many known results that address 1, 2, and 3: (A) In the context of p-adic fields, a classical result by Dem'yanov states that two homogeneous quadratic forms over a p-adic field have a common nontrivial p- adic zero, provided that the number of variables is at least 9. In 1962, Birch- Lewis-Murphy gave an alternative proof to this result by Dem'yanov. (B) In a 1964 paper, Swinnerton-Dyer showed that a system of two quadratic forms over the field of rational numbers in 11 variables, satisfying certain number- theoretic conditions, has a nontrivial rational zero (C) An even more remarkable result proven by Colliot-Thélène, Sansuc, and Swinnerton-Dyer extends Dem'yanov's result to an imaginary number field and also to an arbitrary number field if certain number-theoretic conditions are satisfied. Our work in this dissertation is motivated by the work on the results stated above. With respect to (A), we generalize the result as well as the proof techniques to prove an analogous result over a complete discretely valued field with characteristic not 2. With respect to (B), we demonstrate that this result, and the techniques used in the proof can be extended to a system of two quadratic forms in at least 11 variables over an arbitrary number field. With respect to (C), we give a more comprehensible and self-contained proof of this result over an arbitrary number field using primarily number-theoretic arguments.
- Published
- 2020
28. The u-invariant of p-adic function fields
- Author
-
David B. Leep
- Subjects
Pure mathematics ,Applied Mathematics ,General Mathematics ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,u-invariant ,Function (mathematics) ,Mathematics - Abstract
Over a finitely generated field extension in m variables over a p-adic field, any quadratic form in more than 2m + 2 variables has a nontrivial zero. This bound is sharp. We extend this result to a wider class of fields. A key ingredient to our proofs is a recent result of Heath-Brown on systems of quadratic forms over p-adic fields.
- Published
- 2013
- Full Text
- View/download PDF
29. The Lindelöf number greater than continuum is u-invariant
- Author
-
Arbit, A. V.
- Subjects
u-equivalence ,Lindelöf Number ,Set-Valued Mappings ,Function Spaces ,Mathematics::General Topology ,u-invariant - Abstract
Two Tychonoff spaces X and Y are said to be l-equivalent (u-equivalent) if Cp(X) and Cp(Y) are linearly (uniformly) homeomorphic. N. V. Velichko proved that countable Lindelöf number is preserved by the relation of l-equivalence. A. Bouziad strengthened this result and proved that any Lindelöf number is preserved by the relation of l-equivalence. In this paper it has been proved that the Lindelöf number greater than continuum is preserved by the relation of u-equivalence., 2000 Mathematics Subject Classification: 54C35, 54D20, 54C60.
- Published
- 2016
30. Real fields, valuations, and quadratic forms
- Author
-
David B. Leep and Karim Johannes Becher
- Subjects
Algebra ,Pure mathematics ,Number theory ,Stability index ,Quadratic form ,General Mathematics ,u-invariant ,Context (language use) ,Field (mathematics) ,Algebraic geometry ,Mathematics ,Valuation (finance) - Abstract
We study several field invariants arising in quadratic form theory. Some of the invariants considered are of particular interest in the study of real fields, including the length, the u-invariant, and the (reduced) stability index. In this context we give a systematic account of valuation theoretic arguments that lead to lower bounds for these invariants.
- Published
- 2012
- Full Text
- View/download PDF
31. The u-invariant of one-dimensional function fields over real power series fields
- Author
-
Claus Scheiderer
- Subjects
Power series ,Residue field ,General Mathematics ,Mathematical analysis ,Torsion (algebra) ,u-invariant ,Anisotropy ,Function field ,Mathematics - Abstract
The u-invariant of a field K of characteristic not 2 is the largest dimension of an anisotropic torsion quadratic form over K. We extend the recent theorem by Harbater, Hartmann, and Krashen on the u-invariant of a one-dimensional function field over a complete discretely valued field to the case where the residue field can be ordered.
- Published
- 2009
- Full Text
- View/download PDF
32. Sums of squares in function fields of hyperelliptic curves
- Author
-
Jan Van Geel and Karim Johannes Becher
- Subjects
Definite quadratic form ,Discrete mathematics ,Pure mathematics ,Quadratic form ,General Mathematics ,u-invariant ,Binary quadratic form ,Quadratic field ,Quadratic function ,ddc:510 ,Isotropic quadratic form ,Hyperelliptic curve ,Mathematics - Abstract
We study sums of squares, quadratic forms, and related field invariants in a quadratic extension of the rational function field in one variable over a hereditarily pythagorean base field.
- Published
- 2008
- Full Text
- View/download PDF
33. Going up of the u-invariant over formally real fields
- Author
-
Claus Schubert
- Subjects
Pure mathematics ,General Mathematics ,u-invariant ,Field (mathematics) ,Extension (predicate logic) ,Algorithm ,Stability (probability) ,Mathematics - Abstract
Let F be a field of characteristic not 2, and assume that F has finite reduced stability. Let K/F be any finite extension. We prove that if the general u-invariant u(F) is finite, then u(K) is finite.
- Published
- 2007
- Full Text
- View/download PDF
34. Isotropy of quadratic spaces in finite and infinite dimension
- Author
-
Becher, Karim Johannes and Hoffmann, Detlev W.
- Subjects
isotropy ,General Mathematics ,totally indefinite form ,infinite-dimensional quadratic space ,ddc:510 ,u-invariant ,function field of a quadric ,real field ,quadratic form - Abstract
In the late 1970s, Herbert Gross asked whether there exist fields admitting anisotropic quadratic spaces of arbitrarily large finite dimensions but none of infinite dimension. We construct examples of such fields and also discuss related problems in the theory of central simple algebras and in Milnor K-theory.
- Published
- 2007
- Full Text
- View/download PDF
35. The Pythagoras number and the u-invariant of Laurent series fields in several variables
- Author
-
Yong Hu
- Subjects
Algebra and Number Theory ,Mathematics - Number Theory ,Generalization ,Laurent series ,Fermat's theorem on sums of two squares ,Explained sum of squares ,u-invariant ,Field (mathematics) ,Extension (predicate logic) ,Type (model theory) ,Combinatorics ,11E25, 11E81, 11E20 ,FOS: Mathematics ,Number Theory (math.NT) ,Mathematics - Abstract
We show that every sum of squares in the three-variable Laurent series field $\mathbb{R}((x,y,z))$ is a sum of 4 squares, as was conjectured in a paper of Choi, Dai, Lam and Reznick in the 1980's. We obtain this result by proving that every sum of squares in a finite extension of $\mathbb{R}((x,y))$ is a sum of $3$ squares. It was already shown in Choi, Dai, Lam and Reznick's paper that every sum of squares in $\mathbb{R}((x,y))$ itself is a sum of two squares. We give a generalization of this result where $\mathbb{R}$ is replaced by an arbitrary real field. Our methods yield similar results about the $u$-invariant of fields of the same type., Comment: final version, major revisions in the style of writing (abstract and introduction rewritten) compared to v.1
- Published
- 2015
36. On fields of u-invariant 4
- Author
-
Karim Johannes Becher
- Subjects
Pure mathematics ,General Mathematics ,u-invariant ,Field (mathematics) ,Quadratic form (statistics) ,Real field ,Mathematics - Abstract
This note is motivated by the problem of determining the u-invariant of a field F of characteristic different from two when it is known that $$u\left( {F\left( {\sqrt { - 1} } \right)} \right) = 4.$$ A criterion is given to decide whether u(F) ≤ 4 in this situation
- Published
- 2006
- Full Text
- View/download PDF
37. The u-invariant of one-dimensional function fields over real power series fields
- Author
-
Scheiderer, Claus
- Published
- 2009
- Full Text
- View/download PDF
38. On theU-Invariant ofP-Adic Function Fields
- Author
-
Karim Zahidi
- Subjects
Combinatorics ,Algebra and Number Theory ,Quadratic form ,u-invariant ,Binary quadratic form ,Field (mathematics) ,Rational function ,Quadratic function ,Function (mathematics) ,Isotropic quadratic form ,Mathematics - Abstract
We show that a quadratic form defined over the rational function field ℚ(x 1 , …, x n ) of dimension at least 4.2 n + 1 is isotropic over all fields ℚ p (x 1 , …, x n ), except for finitely many primes. Partial results concerning the u-invariant of p-adic function fields are also shown.
- Published
- 2005
- Full Text
- View/download PDF
39. Hermitian forms and the u-invariant
- Author
-
M. G. Mahmoudi
- Subjects
Combinatorics ,Involution (mathematics) ,Number theory ,General Mathematics ,Division algebra ,u-invariant ,Algebraic geometry ,Algebraic number ,Invariant (mathematics) ,Hermitian matrix ,Mathematics - Abstract
We study the notion of hermitian u-invariant. We give some estimates of the u-invariant of a division algebra with involution in terms of the u-invariant of some subalgebras stable under the involution. We also find some finiteness results for comparing the u-invariant of a division algebra with involution and that of its centre. Some results about the values of this invariant are also given. A description of the Tits index of some algebraic groups of classical type over Open image in new window is given as an application.
- Published
- 2005
- Full Text
- View/download PDF
40. Cantor sets of arcs in decomposable local Siegel disk boundaries☆☆Portions of this paper were presented by the first author at the SE Sectional Meeting of the AMS (Gainesville, FL, March 1999), and at the Spring Topology and Dynamics Conference (Salt Lake City, UT, March 1999)
- Author
-
Andrew O. Maner, Lex Oversteegen, and John C. Mayer
- Subjects
Discrete mathematics ,Pure mathematics ,Mathematics::Dynamical Systems ,Decomposable continuum ,010102 general mathematics ,Mathematics::General Topology ,u-invariant ,Conformal map ,01 natural sciences ,Cantor set ,Siegel disk ,Monotone polygon ,Bounded function ,0103 physical sciences ,Embedding ,Interval (graph theory) ,Point (geometry) ,010307 mathematical physics ,Geometry and Topology ,0101 mathematics ,Tranche ,Mathematics - Abstract
In this paper we construct a family of circle-like continua, each admitting a finest monotone map onto S 1 such that there exists a subset of point inverses which is homeomorphic to the Cantor set cross an interval. We then show how to realize some members of this family as the boundaries ∂U of bounded irreducible local Siegel disks U . These boundaries are geometrically rigid in the following sense: there exist arbitrarily small periodic homeomorphisms of the sphere, conformal on U , which keep U invariant. The embedding portion of this paper follows a flexible construction of Herman. These results provide a partial answer to a question of Rogers and a complete answer to a question of Brechner, Guay, and Mayer.
- Published
- 2001
- Full Text
- View/download PDF
41. On Elman and Lam's filtration of the u-invariant
- Author
-
Detlev W. Hoffmann
- Subjects
Pure mathematics ,law ,Applied Mathematics ,General Mathematics ,u-invariant ,Filtration ,Mathematics ,law.invention - Published
- 1998
- Full Text
- View/download PDF
42. Variations on a theme of rationality of cycles
- Author
-
Nikita A. Karpenko
- Subjects
Discrete mathematics ,Pure mathematics ,steenrod operations ,Quadric ,14c25 ,Algebraic cobordism ,chow groups ,General Mathematics ,Modulo ,u-invariant ,Mathematical proof ,Algebraic cycle ,Number theory ,QA1-939 ,11e04 ,Invariant (mathematics) ,quadrics ,Mathematics ,Function field - Abstract
We prove certain weak versions of some celebrated results due to Alexander Vishik comparing rationality of algebraic cycles over the function field of a quadric and over the base field. The original proofs use Vishik’s symmetric operations in the algebraic cobordism theory and work only in characteristic 0. Our proofs use the modulo 2 Steenrod operations in the Chow theory and work in any characteristic ≠ 2. Our weak versions are still sufficient for existing applications. In particular, Vishik’s construction of fields of u-invariant 2r + 1, for r ≥ 3, is extended to arbitrary characteristic ≠ 2.
- Published
- 2013
- Full Text
- View/download PDF
43. Sums of values represented by a quadratic form
- Author
-
Nicolas Grenier-Boley, Grégory Berhuy, M. G. Mahmoudi, Institut Fourier (IF ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de Didactique André Revuz (LDAR (EA_4434)), Université d'Artois (UA)-Université Paris Diderot - Paris 7 (UPD7)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), Sharif University of Technology [Tehran] (SUT), Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Department of Mathematical Sciences, Sharif University of Technology, Sharif University, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Université de Cergy Pontoise (UCP), and Université Paris-Seine-Université Paris-Seine-Université Paris Diderot - Paris 7 (UPD7)-Université d'Artois (UA)
- Subjects
number ,General Mathematics ,010102 general mathematics ,Level of a field ,Pfister form ,Algebraic geometry ,u-invariant ,01 natural sciences ,Upper and lower bounds ,quadratic form ,Combinatorics ,sums of squares ,square classes ,Number theory ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,0103 physical sciences ,formally real fields ,010307 mathematical physics ,0101 mathematics ,Invariant (mathematics) ,[MATH]Mathematics [math] ,Pythagoras ,hermitian level ,Mathematics - Abstract
Let q be a quadratic form over a field K of characteristic different from 2. We investigate the properties of the smallest positive integer n such that −1 is a sum of n values represented by q in several situations. We relate this invariant (which is called the q-level of K) to other invariants of K such as the level, the u-invariant and the Pythagoras number of K. The problem of determining the numbers which can be realized as a q-level for particular q or K is studied. We also observe that the q-level naturally emerges when one tries to obtain a lower bound for the index of the subgroup of non-zero values represented by a Pfister form q. We highlight necessary and/or sufficient conditions for the q-level to be finite. Throughout the paper, special emphasis is given to the case where q is a Pfister form.
- Published
- 2013
- Full Text
- View/download PDF
44. On Some Sampling-Related Frames in U-Invariant Spaces
- Author
-
María José Muñoz-Bouzo, H. R. Fernández-Morales, Antonio G. García, and M. A. Hernández-Medina
- Subjects
Pure mathematics ,Generalized sampling ,Telecomunicaciones ,Article Subject ,Matemáticas ,Applied Mathematics ,lcsh:Mathematics ,010102 general mathematics ,Mathematical analysis ,u-invariant ,020206 networking & telecommunications ,02 engineering and technology ,lcsh:QA1-939 ,01 natural sciences ,Unitary state ,Linear subspace ,0202 electrical engineering, electronic engineering, information engineering ,Unitary operator ,0101 mathematics ,Invariant (mathematics) ,Analysis ,Separable hilbert space ,Mathematics - Abstract
This paper is concerned with the characterization as frames of some sequences inU-invariant spaces of a separable Hilbert spaceℋwhereUdenotes an unitary operator defined onℋ; besides, the dual frames having the same form are also found. This general setting includes, in particular, shift-invariant or modulation-invariant subspaces inL2ℝ, where these frames are intimately related to the generalized sampling problem. We also deal with some related perturbation problems. In doing so, we need the unitary operatorUto belong to a continuous group of unitary operators.
- Published
- 2013
45. The inverse Fueter mapping theorem in integral form using spherical monogenics
- Author
-
Franciscus Sommen, Fabrizio Colombo, and Irene Sabadini
- Subjects
Polynomial (hyperelastic model) ,LIPSCHITZ SURFACES ,CONSEQUENCES ,Degree (graph theory) ,Mathematics::Complex Variables ,General Mathematics ,Mathematical analysis ,Holomorphic function ,u-invariant ,Inverse ,Type (model theory) ,Dirac operator ,Functional calculus ,Combinatorics ,symbols.namesake ,Mathematics and Statistics ,symbols ,NONCOMMUTING OPERATORS ,FUNCTIONAL-CALCULUS ,Mathematics - Abstract
In this paper we prove an integral representation formula for the inverse Fueter mapping theorem for monogenic functions defined on axially symmetric open sets U ⊆ ℝ n+1, i.e. on open sets U invariant under the action of SO(n), where n is an odd number. Every monogenic function on such an open set U can be written as a series of axially monogenic functions of degree k, i.e. functions of type $$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{f} _k (x) = \left[ {A\left( {x_{0,\rho } } \right) + \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\omega } {\rm B}\left( {x_{0,\rho } } \right)} \right]\mathcal{P}_k (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} )$$ , where A(x 0, ρ) and B(x 0, ρ) satisfy a suitable Vekua-type system and $$\mathcal{P}_k (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} )$$ is a homogeneous monogenic polynomial of degree k. The Fueter mapping theorem says that given a holomorphic function f of a paravector variable defined on U, then the function $$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{f} _k (x)\mathcal{P}_k (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} )$$ given by $$\Delta ^{k + \tfrac{{n - 1}} {2}} \left( {f(x)\mathcal{P}_k (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} )} \right) = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{f} (x)\mathcal{P}_k (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} )$$ is a monogenic function. The aim of this paper is to invert the Fueter mapping theorem by determining a holomorphic function f of a paravector variable in terms of $$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{f} _k (x)\mathcal{P}_k (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{x} )$$ . This result allows one to invert the Fueter mapping theorem for any monogenic function defined on an axially symmetric open set.
- Published
- 2013
46. Period-index and u-invariant questions for function fields over complete discretely valued fields
- Author
-
V. Suresh and R. Parimala
- Subjects
Pure mathematics ,Period (periodic table) ,General Mathematics ,u-invariant ,Field (mathematics) ,Mathematics - Rings and Algebras ,Function (mathematics) ,Residue field ,Rings and Algebras (math.RA) ,FOS: Mathematics ,Perfect field ,Function field ,Rings and Algebras, Algebraic Geometry, Number theory ,Mathematics - Abstract
Let K be a complete discretely valued field and F the function field of a curve over K. If the characteristic of the residue field k of K is p > 0, then we give a bound for the Brauer p-simension of F in terms of the p-rank of k. If k is a perfect field of characteristic 2, we show that the u-invaraint of F is at most 8.
- Published
- 2013
- Full Text
- View/download PDF
47. Symbol length of p-algebras of prime exponent
- Author
-
Adam Chapman
- Subjects
u-invariant ,Field (mathematics) ,01 natural sciences ,Upper and lower bounds ,Prime (order theory) ,Combinatorics ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,0103 physical sciences ,FOS: Mathematics ,Computer Science::General Literature ,0101 mathematics ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Algebra and Number Theory ,Computer Science::Information Retrieval ,Applied Mathematics ,010102 general mathematics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) ,Mathematics - Rings and Algebras ,TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES ,Tensor product ,Rings and Algebras (math.RA) ,Bounded function ,Homogeneous polynomial ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Exponent ,16K20 (primary), 11E76, 11E81 (secondary) ,010307 mathematical physics - Abstract
We prove that if the maximal dimension of an anisotropic homogeneous polynomial form of prime degree [Formula: see text] over a field [Formula: see text] with [Formula: see text] is a finite integer [Formula: see text] greater than 1 then the symbol length of [Formula: see text]-algebras of exponent [Formula: see text] over [Formula: see text] is bounded from above by [Formula: see text], and show that every two tensor products of symbol algebras of lengths [Formula: see text] and [Formula: see text] with [Formula: see text] can be modified so that they share a common slot. For [Formula: see text], we obtain an upper bound of [Formula: see text] for the symbol length, which is sharp when [Formula: see text].
- Published
- 2016
- Full Text
- View/download PDF
48. Approximation faible et principe local-global pour certaines variétés rationnellement connexes
- Author
-
Hu, Yong, Laboratoire de Mathématiques d'Orsay (LM-Orsay), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Université Paris Sud - Paris XI, and Jean-Louis Colliot-Thélène
- Subjects
U-invariant ,Weak approximation ,Variétés rationnellement connexes ,Rationally connected varieties ,Ramification of division algebras ,Hypersurfaces cubiques ,Cubic hypersurfaces ,Principe local-global ,Ramification des algèbres à division ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Anneau local hensélien de dimension 2 ,Approximation faible ,2-dimensional local henselian domain ,Local-global principle ,Formes quadratiques ,Quadratic forms - Abstract
This thesis is concerned with the study of some arithmetic properties of certain algebraic varieties which are ``simplest'' in some geometric sense and which are defined over fields of geometric type. It consists of three chapters. In the first chapter, which is independent of the other two, we consider the weak approximation property for a smooth projective rationally connecte d variety X defined over the function field K=k(C) of an algebraic curve C over a field k. Suppose that X admits a K-rational point. Using geometric methods we prove that X(K) is Zariski dense in X if k is a large field, and that under suitable hypotheses weak approximation with respect to a set of places of good reduction holds for X. When k is a finite field, we obtain weak approximation at any given place of good reduction for a smooth cubic surface over K as well as a zero-th order weak approximation result for higher dimensional cubic hypersurfaces over K.The second part of the thesis consists of the last two chapters, where we work over the fraction field K of a 2-dimensional, excellent, henselian local domain R whose residue field k is often assumed to be finite, and where we use more algebraic tools. We first study the ramification and the cyclicity of division algebras over such a field K. We show in particular that every Brauer class over K of order n, which is prime to the residue characteristic, has index dividing n^2, and that the cyclicity of a Brauer class of prime order can be tested locally over the completions of K with respect to discrete valuations. These results are used in the last chapter to study the arithmetic of quadratic forms over K. We prove that every quadratic form of rank \ge 9 over K has a nontrivial zero. When K is the fraction field of a power series ring A[[t]] over a complete discrete valuation ring A, we prove the local-global principle for quadratic forms of rank \ge 5 over K. For general K we prove the local-global principle for quadratic forms of rank 5. The local-global principle for quadratic forms of rank 6, 7 or 8 is still open in the general case.; Cette thèse se concentre sur l'étude de quelques propriétés arithmétiques de certaines variétés algébriques qui sont ``les plus simples'' en un sens géométrique et qui sont définies sur des corps de type géométrique. Elle se compose de trois chapitres. Dans le premier chapitre, indépendant des deux autres, on s'intéresse à la propriété d'approximation faible pour une variété projective lisse rationnellement connexe X définie sur le corps de fonctions K=k(C) d'une courbe algébrique C sur un corps k. Supposons que X possède un K-point rationnel. En utilisant des méthodes géométriques, on démontre que X(K) est Zariski dense dans X si k est un corps fertile, et que l'approximation faible en un certain ensemble de places de bonne réduction vaut pour X sous des hypothèses supplémentaires convenables. Lorsque k est un corps fini, on obtient l'approximation faible en une place quelconque de bonne réduction pour une surface cubique lisse sur K ainsi qu'un résultat sur l'approximation faible d'ordre zéro pour des hypersurfaces cubiques de dimension supérieure sur K.Les deux autres chapitres forment la seconde partie de la thèse, où on travaille sur le corps des fractions K d'un anneau intègre local R, hensélien, excellent de dimension 2 dont le corps résiduel k est souvent supposé fini et où on emploie des outils plus algébriques. On étudie d'abord la ramification et la cyclicité des algèbres à division sur un tel corps K. On démontre en particulier que toute classe de Brauer d'ordre n premier à la caractéristique résiduelle sur K est d'indice divisant n^2 et que la cyclicité d'une classe de Brauer d'ordre premier peut être testée localement sur les corps complétés par rapport aux valuations discrètes de K. Ces résultats sont appliqués dans le dernier chapitre pour étudier l'arithmétique des formes quadratiques sur K. On montre que toute forme quadratique de rang \ge 9 sur K possède un zéro non trivial. Si K est le corps des fractions d'un anneau de séries formelles A[[t]] sur un anneau de valuation discrète complet A, on a prouvé le principe local-global pour toute forme quadratique de rang \ge 5 sur K. Pour K général on a établi le principe local-global pour les formes de rang 5. Le cas des formes de rang 6,7 ou 8 est ouvert.
- Published
- 2012
49. Weak approximation and local-global principle for certain rationally connected varieties
- Author
-
Hu, Yong, Laboratoire de Mathématiques d'Orsay (LM-Orsay), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Université Paris Sud - Paris XI, Jean-Louis Colliot-Thélène, and STAR, ABES
- Subjects
U-invariant ,Weak approximation ,Variétés rationnellement connexes ,Rationally connected varieties ,Ramification of division algebras ,[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM] ,Hypersurfaces cubiques ,Cubic hypersurfaces ,Principe local-global ,Ramification des algèbres à division ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Anneau local hensélien de dimension 2 ,Approximation faible ,2-dimensional local henselian domain ,Local-global principle ,Formes quadratiques ,Quadratic forms - Abstract
This thesis is concerned with the study of some arithmetic properties of certain algebraic varieties which are ``simplest'' in some geometric sense and which are defined over fields of geometric type. It consists of three chapters. In the first chapter, which is independent of the other two, we consider the weak approximation property for a smooth projective rationally connecte d variety X defined over the function field K=k(C) of an algebraic curve C over a field k. Suppose that X admits a K-rational point. Using geometric methods we prove that X(K) is Zariski dense in X if k is a large field, and that under suitable hypotheses weak approximation with respect to a set of places of good reduction holds for X. When k is a finite field, we obtain weak approximation at any given place of good reduction for a smooth cubic surface over K as well as a zero-th order weak approximation result for higher dimensional cubic hypersurfaces over K.The second part of the thesis consists of the last two chapters, where we work over the fraction field K of a 2-dimensional, excellent, henselian local domain R whose residue field k is often assumed to be finite, and where we use more algebraic tools. We first study the ramification and the cyclicity of division algebras over such a field K. We show in particular that every Brauer class over K of order n, which is prime to the residue characteristic, has index dividing n^2, and that the cyclicity of a Brauer class of prime order can be tested locally over the completions of K with respect to discrete valuations. These results are used in the last chapter to study the arithmetic of quadratic forms over K. We prove that every quadratic form of rank \ge 9 over K has a nontrivial zero. When K is the fraction field of a power series ring A[[t]] over a complete discrete valuation ring A, we prove the local-global principle for quadratic forms of rank \ge 5 over K. For general K we prove the local-global principle for quadratic forms of rank 5. The local-global principle for quadratic forms of rank 6, 7 or 8 is still open in the general case., Cette thèse se concentre sur l'étude de quelques propriétés arithmétiques de certaines variétés algébriques qui sont ``les plus simples'' en un sens géométrique et qui sont définies sur des corps de type géométrique. Elle se compose de trois chapitres. Dans le premier chapitre, indépendant des deux autres, on s'intéresse à la propriété d'approximation faible pour une variété projective lisse rationnellement connexe X définie sur le corps de fonctions K=k(C) d'une courbe algébrique C sur un corps k. Supposons que X possède un K-point rationnel. En utilisant des méthodes géométriques, on démontre que X(K) est Zariski dense dans X si k est un corps fertile, et que l'approximation faible en un certain ensemble de places de bonne réduction vaut pour X sous des hypothèses supplémentaires convenables. Lorsque k est un corps fini, on obtient l'approximation faible en une place quelconque de bonne réduction pour une surface cubique lisse sur K ainsi qu'un résultat sur l'approximation faible d'ordre zéro pour des hypersurfaces cubiques de dimension supérieure sur K.Les deux autres chapitres forment la seconde partie de la thèse, où on travaille sur le corps des fractions K d'un anneau intègre local R, hensélien, excellent de dimension 2 dont le corps résiduel k est souvent supposé fini et où on emploie des outils plus algébriques. On étudie d'abord la ramification et la cyclicité des algèbres à division sur un tel corps K. On démontre en particulier que toute classe de Brauer d'ordre n premier à la caractéristique résiduelle sur K est d'indice divisant n^2 et que la cyclicité d'une classe de Brauer d'ordre premier peut être testée localement sur les corps complétés par rapport aux valuations discrètes de K. Ces résultats sont appliqués dans le dernier chapitre pour étudier l'arithmétique des formes quadratiques sur K. On montre que toute forme quadratique de rang \ge 9 sur K possède un zéro non trivial. Si K est le corps des fractions d'un anneau de séries formelles A[[t]] sur un anneau de valuation discrète complet A, on a prouvé le principe local-global pour toute forme quadratique de rang \ge 5 sur K. Pour K général on a établi le principe local-global pour les formes de rang 5. Le cas des formes de rang 6,7 ou 8 est ouvert.
- Published
- 2012
50. U-invariant sampling and stable reconstruction in atomic spaces
- Author
-
Volker Pohl and Holger Boche
- Subjects
Sampling scheme ,symbols.namesake ,Signal reconstruction ,Mathematical analysis ,Hilbert space ,symbols ,Sampling (statistics) ,u-invariant ,Signal ,Linear subspace ,Linear filter ,Mathematics - Abstract
Given a U-invariant sampling scheme on an arbitrary Hilbert space ℋ. This paper characterizes atomic subspaces A of ℋ such that every signal x ∈ A can be reconstructed from its samples acquired with this sampling scheme. If signal recovery is possible a linear filter is derived which reconstructs the signal from the samples.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.