1. Dimensional reduction of a poromechanical cardiac model for myocardial perfusion studies
- Author
-
Radomír Chabiniok, Bruno Burtschell, Dominique Chapelle, Philippe Moireau, Mathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine (M3DISIM), Laboratoire de mécanique des solides (LMS), École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), and University of Texas Southwestern Medical Center [Dallas]
- Subjects
Myocardial perfusion ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Ischemic heart disease ,Mechanical Engineering ,Computational Mechanics ,Biomechanical modeling ,Poroelasticity ,[PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] ,Computational physiology ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Microvascular disease ,Civil and Structural Engineering - Abstract
International audience; In this paper, we adapt a previously developed poromechanical formulation to model the perfusion of myocardium during a cardiac cycle. First, a complete model is derived in 3D. Then, we perform a dimensional reduction under the assumption of spherical symmetry and propose a numerical algorithm that enables us to perform simulations of the myocardial perfusion throughout the cardiac cycle. These simulations illustrate the use of the proposed model to represent various physiological and pathological scenarios, specifically the vasodilation in the coronary network (to reproduce the standard clinical assessment of myocardial perfusion and perfusion reserve), the stenosis of a large coronary artery, an increased vascular resistance in the microcirculation (microvascular disease) and the consequences of inotropic activation (increased myocardial contractility) particularly at the level of the systolic flow impediment. Our results show that the model gives promising qualitative reproductions of complex physiological phenomena. This paves the way for future quantitative studies using clinical or experimental data.
- Published
- 2022
- Full Text
- View/download PDF