1. The sum of Lagrange numbers
- Author
-
Brice Loustau, Jonah Gaster, Rutgers University [Newark], Rutgers University System (Rutgers), and Loustau, Brice
- Subjects
Conjecture ,Mathematics - Number Theory ,Markov chain ,Applied Mathematics ,General Mathematics ,Geometric Topology (math.GT) ,Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) ,Torus ,16. Peace & justice ,Mathematics::Geometric Topology ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] ,Combinatorics ,Mathematics - Geometric Topology ,Identity (mathematics) ,57K20, 11J06 ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,FOS: Mathematics ,Golden ratio ,Number Theory (math.NT) ,Uniqueness ,[MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT] ,[MATH.MATH-NT] Mathematics [math]/Number Theory [math.NT] ,Mathematics - Abstract
Combining McShane's identity on a hyperbolic punctured torus with Schmutz's work on the Markov Uniqueness Conjecture (MUC), we find that MUC is equivalent to the identity \begin{equation} \sum_{n=1}^\infty \, \left( 3- L_n \right) \, = \, 4 - \varphi - \sqrt 2 \end{equation} where $L_n$ is the $n$th Lagrange number and $\varphi=\frac{1+\sqrt5}2$ is the golden ratio., Comment: 5 pages, 2 figures, comments welcome!
- Published
- 2021
- Full Text
- View/download PDF