127,877 results on '"Burger, A"'
Search Results
2. Detection of very-high-energy gamma-ray emission from Eta Carinae during its 2020 periastron passage
- Author
-
Collaboration, H. E. S. S., Aharonian, F., Benkhali, F. Ait, Aschersleben, J., Ashkar, H., Martins, V. Barbosa, Batzofin, R., Becherini, Y., Berge, D., Bernlöhr, K., Böttcher, M., Boisson, C., Bolmont, J., de Lavergne, M. de Bony, Bradascio, F., Brose, R., Brown, A., Brun, F., Bruno, B., Burger-Scheidlin, C., Casanova, S., Celic, J., Cerruti, M., Chand, T., Chandra, S., Chen, A., Chibueze, J., Chibueze, O., Collins, T., Cotter, G., Mbarubucyeye, J. Damascene, Scarpin, J. de Assis, Devin, J., Djannati-Ataï, A., Djuvsland, J., Dmytriiev, A., Egberts, K., Einecke, S., Ernenwein, J. -P., Nieves, C. Escañuela, Feijen, K., Filipovic, M., Fontaine, G., Funk, S., Gabici, S., Glicenstein, J. F., Grolleron, G., Grondin, M. -H., Haerer, L., Heß, B., Hinton, J. A., Hofmann, W., Holch, T. L., Holler, M., Horns, D., Huang, Zhiqiu, Jamrozy, M., Jankowsky, F., Jardin-Blicq, A., Jung-Richardt, I., Katarzyński, K., Khatoon, R., Khélifi, B., Kluźniak, W., Komin, Nu., Kosack, K., Kostunin, D., Lang, R. G., Stum, S. Le, Lemière, A., Lemoine-Goumard, M., Lenain, J. -P., Luashvili, A., Mackey, J., Malyshev, D., Marandon, V., Marcowith, A., Martí-Devesa, G., Marx, R., Mehta, A., Mitchell, A., Moderski, R., Moghadam, M. O., Mohrmann, L., Moulin, E., de Naurois, M., Niemiec, J., Ohm, S., Olivera-Nieto, L., Wilhelmi, E. de Ona, Ostrowski, M., Panny, S., Panter, M., Parsons, R. D., Pensec, U., Pühlhofer, G., Quirrenbach, A., Ravikularaman, S., Regeard, M., Reimer, A., Reimer, O., Remy, Q., Ren, H., Reville, B., Rieger, F., Rowell, G., Rudak, B., Ruiz-Velasco, E., Sabri, K., Sahakian, V., Salzmann, H., Santangelo, A., Sasaki, M., Schäfer, J., Schüssler, F., Schutte, H. M., Shapopi, J. N. S., Spencer, S., Stawarz, Ł., Steenkamp, R., Steinmassl, S., Steppa, C., Streil, K., Tanaka, T., Terrier, R., Tluczykont, M., Tsirou, M., Tsuji, N., van Eldik, C., Vecchi, M., Venter, C., Wach, T., Wagner, S. J., Werner, F., White, R., Wierzcholska, A., Zacharias, M., Zdziarski, A. A., Zech, A., and Żywucka, N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The colliding-wind binary system $\eta$ Carinae has been identified as a source of high-energy (HE, below $\sim$100\,GeV) and very-high-energy (VHE, above $\sim$100\,GeV) gamma rays in the last decade, making it unique among these systems. With its eccentric 5.5-year-long orbit, the periastron passage, during which the stars are separated by only $1-2$\,au, is an intriguing time interval to probe particle acceleration processes within the system. In this work, we report on an extensive VHE observation campaign that for the first time covers the full periastron passage carried out with the High Energy Stereoscopic System (H.E.S.S.) in its 5-telescope configuration with upgraded cameras. VHE gamma-ray emission from $\eta$ Carinae was detected during the periastron passage with a steep spectrum with spectral index $\Gamma= 3.3 \pm 0.2_{\mathrm{stat}} \, \pm 0.1_{\mathrm{syst}}$. Together with previous and follow-up observations, we derive a long-term light curve sampling one full orbit, showing hints of an increase of the VHE flux towards periastron, but no hint of variability during the passage itself. An analysis of contemporaneous Fermi-LAT data shows that the VHE spectrum represents a smooth continuation of the HE spectrum. From modelling the combined spectrum we conclude that the gamma-ray emission region is located at distances of ${\sim}10 - 20$\,au from the centre of mass of the system and that protons are accelerated up to energies of at least several TeV inside the system in this phase., Comment: Accepted at A&A; 11 pages, 9 figures
- Published
- 2025
3. Modeling the drying process in hard carbon electrodes based on the phase-field method
- Author
-
Weichel, Marcel, Reder, Martin, Daubner, Simon, Klemens, Julian, Burger, David, Scharfer, Philip, Schabel, Wilhelm, Nestler, Britta, and Schneider, Daniel
- Subjects
Computer Science - Computational Engineering, Finance, and Science - Abstract
The present work addresses the simulation of pore emptying during the drying of battery electrodes. For this purpose, a model based on the multiphase-field method (MPF) is used, since it is an established approach for modeling and simulating multiphysical problems. A model based on phase fields is introduced that takes into account fluid flow, capillary effects, and wetting behavior, all of which play an important role in drying. In addition, the MPF makes it possible to track the movement of the liquid-air interface without computationally expensive adaptive mesh generation. The presented model is used for the first time to investigate pore emptying in real hard carbon microstructures. For this purpose, the microstructures of real dried electrodes are used as input for the simulations. The simulations performed here demonstrate the importance of considering the resolved microstructural information compared to models that rely only on statistical geometry parameters such as pore size distributions. The influence of various parameters such as different microstructures, fluid viscosity, and the contact angle on pore emptying are investigated. In addition, this work establishes a correlation between the capillary number and the breakthrough time of the solvent as well as the height difference of the solvent front at the time of breakthrough. The results indicate that the drying process can be optimized by doping the particle surface, which changes the contact angle between the fluids and the particles.
- Published
- 2025
4. Improving Stability Estimates in Adversarial Explainable AI through Alternate Search Methods
- Author
-
Burger, Christopher and Walter, Charles
- Subjects
Computer Science - Machine Learning - Abstract
Advances in the effectiveness of machine learning models have come at the cost of enormous complexity resulting in a poor understanding of how they function. Local surrogate methods have been used to approximate the workings of these complex models, but recent work has revealed their vulnerability to adversarial attacks where the explanation produced is appreciably different while the meaning and structure of the complex model's output remains similar. This prior work has focused on the existence of these weaknesses but not on their magnitude. Here we explore using an alternate search method with the goal of finding minimum viable perturbations, the fewest perturbations necessary to achieve a fixed similarity value between the original and altered text's explanation. Intuitively, a method that requires fewer perturbations to expose a given level of instability is inferior to one which requires more. This nuance allows for superior comparisons of the stability of explainability methods., Comment: 9 pages, 3 figures, 5 tables. arXiv admin note: text overlap with arXiv:2406.15839
- Published
- 2025
5. Investigating Parameter-Efficiency of Hybrid QuGANs Based on Geometric Properties of Generated Sea Route Graphs
- Author
-
Rohe, Tobias, Burger, Florian, Kölle, Michael, Wölckert, Sebastian, Zorn, Maximilian, and Linnhoff-Popien, Claudia
- Subjects
Computer Science - Machine Learning ,Quantum Physics - Abstract
The demand for artificially generated data for the development, training and testing of new algorithms is omnipresent. Quantum computing (QC), does offer the hope that its inherent probabilistic functionality can be utilised in this field of generative artificial intelligence. In this study, we use quantum-classical hybrid generative adversarial networks (QuGANs) to artificially generate graphs of shipping routes. We create a training dataset based on real shipping data and investigate to what extent QuGANs are able to learn and reproduce inherent distributions and geometric features of this data. We compare hybrid QuGANs with classical Generative Adversarial Networks (GANs), with a special focus on their parameter efficiency. Our results indicate that QuGANs are indeed able to quickly learn and represent underlying geometric properties and distributions, although they seem to have difficulties in introducing variance into the sampled data. Compared to classical GANs of greater size, measured in the number of parameters used, some QuGANs show similar result quality. Our reference to concrete use cases, such as the generation of shipping data, provides an illustrative example and demonstrate the potential and diversity in which QC can be used.
- Published
- 2025
6. Analysis of mean-field models arising from self-attention dynamics in transformer architectures with layer normalization
- Author
-
Burger, Martin, Kabri, Samira, Korolev, Yury, Roith, Tim, and Weigand, Lukas
- Subjects
Mathematics - Analysis of PDEs ,68Q32, 49Q20, 43A35 - Abstract
The aim of this paper is to provide a mathematical analysis of transformer architectures using a self-attention mechanism with layer normalization. In particular, observed patterns in such architectures resembling either clusters or uniform distributions pose a number of challenging mathematical questions. We focus on a special case that admits a gradient flow formulation in the spaces of probability measures on the unit sphere under a special metric, which allows us to give at least partial answers in a rigorous way. The arising mathematical problems resemble those recently studied in aggregation equations, but with additional challenges emerging from restricting the dynamics to the sphere and the particular form of the interaction energy. We provide a rigorous framework for studying the gradient flow, which also suggests a possible metric geometry to study the general case (i.e. one that is not described by a gradient flow). We further analyze the stationary points of the induced self-attention dynamics. The latter are related to stationary points of the interaction energy in the Wasserstein geometry, and we further discuss energy minimizers and maximizers in different parameter settings., Comment: 44pages, 7 figures
- Published
- 2025
7. Towards Robust and Accurate Stability Estimation of Local Surrogate Models in Text-based Explainable AI
- Author
-
Burger, Christopher, Walter, Charles, Le, Thai, and Chen, Lingwei
- Subjects
Computer Science - Machine Learning ,Computer Science - Cryptography and Security - Abstract
Recent work has investigated the concept of adversarial attacks on explainable AI (XAI) in the NLP domain with a focus on examining the vulnerability of local surrogate methods such as Lime to adversarial perturbations or small changes on the input of a machine learning (ML) model. In such attacks, the generated explanation is manipulated while the meaning and structure of the original input remain similar under the ML model. Such attacks are especially alarming when XAI is used as a basis for decision making (e.g., prescribing drugs based on AI medical predictors) or for legal action (e.g., legal dispute involving AI software). Although weaknesses across many XAI methods have been shown to exist, the reasons behind why remain little explored. Central to this XAI manipulation is the similarity measure used to calculate how one explanation differs from another. A poor choice of similarity measure can lead to erroneous conclusions about the stability or adversarial robustness of an XAI method. Therefore, this work investigates a variety of similarity measures designed for text-based ranked lists referenced in related work to determine their comparative suitability for use. We find that many measures are overly sensitive, resulting in erroneous estimates of stability. We then propose a weighting scheme for text-based data that incorporates the synonymity between the features within an explanation, providing more accurate estimates of the actual weakness of XAI methods to adversarial examples., Comment: 12 pages, 1 figure, 4 tables. arXiv admin note: substantial text overlap with arXiv:2406.15839. substantial text overlap with arXiv:2501.01516
- Published
- 2025
8. Improving Robustness Estimates in Natural Language Explainable AI though Synonymity Weighted Similarity Measures
- Author
-
Burger, Christopher
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language - Abstract
Explainable AI (XAI) has seen a surge in recent interest with the proliferation of powerful but intractable black-box models. Moreover, XAI has come under fire for techniques that may not offer reliable explanations. As many of the methods in XAI are themselves models, adversarial examples have been prominent in the literature surrounding the effectiveness of XAI, with the objective of these examples being to alter the explanation while maintaining the output of the original model. For explanations in natural language, it is natural to use measures found in the domain of information retrieval for use with ranked lists to guide the adversarial XAI process. We show that the standard implementation of these measures are poorly suited for the comparison of explanations in adversarial XAI and amend them by using information that is discarded, the synonymity of perturbed words. This synonymity weighting produces more accurate estimates of the actual weakness of XAI methods to adversarial examples., Comment: 10 pages, 2 figures, 4 tables
- Published
- 2025
9. Diprotodon on the sky. The Large Galactic Supernova Remnant (SNR) G278.94+1.35
- Author
-
Filipović, Miroslav D., Lazarević, S., Araya, M., Hurley-Walker, N., Kothes, R., Sano, H., Rowell, G., Martin, P., Fukui, Y., Alsaberi, R. Z. E., Arbutina, B., Ball, B., Bordiu, C., Brose, R., Bufano, F., Burger-Scheidlin, C., Collins, T. A., Crawford, E. J., Dai, S., Duchesne, S. W., Fuller, R. S., Hopkins, A. M., Ingallinera, A., Inoue, H., Jarrett, T. H., Koribalski, B. S., Leahy, D., Luken, K. J., Mackey, J., Macgregor, P. J., Norris, R. P., Payne, J. L., Riggi, S., Riseley, C. J., Sasaki, M., Smeaton, Z. J., Sushch, I., Stupar, M., Umana, G., Urošević, D., Velović, V., Vernstrom, T., Vukotić, B., and West, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present a re-discovery of G278.94+1.35 as possibly one of the largest known Galactic supernova remnants (SNR) - that we name Diprotodon. While previously established as a Galactic SNR, Diprotodon is visible in our new EMU and GLEAM radio continuum images at an angular size of 3.33x3.23 deg, much larger than previously measured. At the previously suggested distance of 2.7 kpc, this implies a diameter of 157x152 pc. This size would qualify Diprotodon as the largest known SNR and pushes our estimates of SNR sizes to the upper limits. We investigate the environment in which the SNR is located and examine various scenarios that might explain such a large and relatively bright SNR appearance. We find that Diprotodon is most likely at a much closer distance of $\sim$1 kpc, implying its diameter is 58x56 pc and it is in the radiative evolutionary phase. We also present a new Fermi-LAT data analysis that confirms the angular extent of the SNR in gamma-rays. The origin of the high-energy emission remains somewhat puzzling, and the scenarios we explore reveal new puzzles, given this unexpected and unique observation of a seemingly evolved SNR having a hard GeV spectrum with no breaks. We explore both leptonic and hadronic scenarios, as well as the possibility that the high-energy emission arises from the leftover particle population of a historic pulsar wind nebula., Comment: 21 pages, 12 figures, 1 table. Accepted for publication in PASA
- Published
- 2024
10. Metabolic scaling, life history, and the equal fitness paradigm
- Author
-
Burger, Joseph R.
- Subjects
Quantitative Biology - Populations and Evolution - Abstract
Natural selection has produced an extraordinary diversity of life histories spanning many orders of magnitude in body size, vital rates, and biological times. In general, big and cold organisms grow and reproduce slowly and live long lives; small and warm organisms grow and reproduce quickly and live short lives. The Metabolic Theory of Ecology (MTE) predicts equal and opposite scaling exponents of mass-specific biological rates (e.g., respiration, growth, and reproduction) and times (e.g., development, lifespan, and generation) as a function of size. However, empirical support for these predictions varies depending on trait and taxon. Here I: 1) provide background and mixed support for the quarter-power scaling exponents for life history rates and times predicted by MTE, 2) discuss possible explanations, including effects of natural selection on taxonomic and functional groups, and inadequate data for life history traits, 3) briefly summarize the Equal Fitness Paradigm (EFP) as a unifying theory of bioenergetics, life history and demography that does not depend on any particular allometric scalings, and 4) discuss ramifications of the EFP for other biological phenomena, including physiological performance metrics and trophic energetics of ecosystems. I draw mostly from my knowledge of mammals, yet in many cases the mammalian examples can be generalized to other organisms. I end with prospects for further evaluating and extending the EFP.
- Published
- 2024
11. Flavor at FASER: Discovering Light Scalars Beyond Minimal Flavor Violation
- Author
-
Balkin, Reuven, Burger, Noam, Feng, Jonathan L., and Shadmi, Yael
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment - Abstract
We study a simple class of flavored scalar models, in which the couplings of a new light scalar to standard-model fermions are controlled by the flavor symmetry responsible for fermion masses and mixings. The scalar couplings are then aligned with the Yukawa matrices, with small but nonzero flavor-violating entries. $D$-meson decays are an important source of scalar production in these models, in contrast to models assuming minimal flavor violation, in which $B$ and $K$ decays dominate. We show that FASER2 can probe large portions of the parameter space of the models, with comparable numbers of scalars from $B$ and $D$ decays in some regions. If discovered, these particles will not only provide evidence of new physics, but they may also shed new light on the standard model flavor puzzle. Finally, the richness of theoretical models underscores the importance of model-independent interpretations. We therefore analyze the sensitivity of FASER and other experimental searches in terms of physical parameters:~(i) the branching fractions of heavy mesons to the scalar, and (ii) $\tau/m$, where $\tau$ and $m$ are the scalar's lifetime and mass, respectively. The results are largely independent of the new particle's spin and can be used to extract constraints on a wide variety of models., Comment: 26 pages, 7 figures
- Published
- 2024
12. Demonstrating dynamic surface codes
- Author
-
Eickbusch, Alec, McEwen, Matt, Sivak, Volodymyr, Bourassa, Alexandre, Atalaya, Juan, Claes, Jahan, Kafri, Dvir, Gidney, Craig, Warren, Christopher W., Gross, Jonathan, Opremcak, Alex, Miao, Nicholas Zobrist Kevin C., Roberts, Gabrielle, Satzinger, Kevin J., Bengtsson, Andreas, Neeley, Matthew, Livingston, William P., Greene, Alex, Rajeev, Acharya, Beni, Laleh Aghababaie, Aigeldinger, Georg, Alcaraz, Ross, Andersen, Trond I., Ansmann, Markus, Frank, Arute, Arya, Kunal, Asfaw, Abraham, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bilmes, Alexander, Jenna, Bovaird, Bowers, Dylan, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Tim, Burger, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chiaro, Ben, Chih, Liang-Ying, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Alexander, Crook, L., Curtin, Ben, Das, Sayan, Barba, Alexander Del Toro, Demura, Sean, De Lorenzo, Laura, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya K., Dunsworth, Andrew, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gonzalo, Garcia, Gasca, Robert, Genois, Élie, Giang, William, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Dietrich, Graumann, Ha, Tan, Habegger, Steve, Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Higgott, Oscar, Hiltermann, Reno, Hilton, Jeremy, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Jeffrey, Evan, Jiang, Zhang, Jin, Xiaoxuan, Jones, Cody, Joshi, Chaitali, Juhas, Pavol, Kabel, Andreas, Kang, Hui, Amir, Karamlou, H., Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Tiano, Lange-Dei, Langley, Brandon W., Lau, Kim-Ming, Ledford, Justin, Lee, Kenny, Lester, Brian J., Guevel, Loïck Le, Wing, Li, Yan, Lill, Alexander T., Locharla, Aditya, Lucero, Erik, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., Meeks, Seneca, Anthony, Megrant, Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Movassagh, Ramis, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Oas, Logan, Orosco, Raymond, Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Rhodes, David M., Rosenberg, Eliott, Rossi, Elizabeth, Sankaragomathi, Kannan, Schurkus, Henry F., Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Tomita, Eifu, Torres, Alfredo, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Sergey, Vdovichev, Vidal, Guifre, Heidweiller, Catherine Vollgraff, Waltman, Steven, Waltz, Jonathan, Wang, Shannon X., Ware, Brayden, Weidel, Travis, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Woodson, Maddy, Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Yaxing, Zhang, Zhu, Ningfeng, Boixo, Sergio, Kelly, Julian, Smelyanskiy, Vadim, Neven, Hartmut, Bacon, Dave, Chen, Zijun, Klimov, Paul V., Roushan, Pedram, Neill, Charles, Chen, Yu, and Morvan, Alexis
- Subjects
Quantum Physics - Abstract
A remarkable characteristic of quantum computing is the potential for reliable computation despite faulty qubits. This can be achieved through quantum error correction, which is typically implemented by repeatedly applying static syndrome checks, permitting correction of logical information. Recently, the development of time-dynamic approaches to error correction has uncovered new codes and new code implementations. In this work, we experimentally demonstrate three time-dynamic implementations of the surface code, each offering a unique solution to hardware design challenges and introducing flexibility in surface code realization. First, we embed the surface code on a hexagonal lattice, reducing the necessary couplings per qubit from four to three. Second, we walk a surface code, swapping the role of data and measure qubits each round, achieving error correction with built-in removal of accumulated non-computational errors. Finally, we realize the surface code using iSWAP gates instead of the traditional CNOT, extending the set of viable gates for error correction without additional overhead. We measure the error suppression factor when scaling from distance-3 to distance-5 codes of $\Lambda_{35,\text{hex}} = 2.15(2)$, $\Lambda_{35,\text{walk}} = 1.69(6)$, and $\Lambda_{35,\text{iSWAP}} = 1.56(2)$, achieving state-of-the-art error suppression for each. With detailed error budgeting, we explore their performance trade-offs and implications for hardware design. This work demonstrates that dynamic circuit approaches satisfy the demands for fault-tolerance and opens new alternative avenues for scalable hardware design., Comment: 11 pages, 5 figures, Supplementary Information
- Published
- 2024
13. Scaling and logic in the color code on a superconducting quantum processor
- Author
-
Lacroix, Nathan, Bourassa, Alexandre, Heras, Francisco J. H., Zhang, Lei M., Bausch, Johannes, Senior, Andrew W., Edlich, Thomas, Shutty, Noah, Sivak, Volodymyr, Bengtsson, Andreas, McEwen, Matt, Higgott, Oscar, Kafri, Dvir, Claes, Jahan, Morvan, Alexis, Chen, Zijun, Zalcman, Adam, Madhuk, Sid, Acharya, Rajeev, Beni, Laleh Aghababaie, Aigeldinger, Georg, Alcaraz, Ross, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bilmes, Alexander, Blackwell, Sam, Bovaird, Jenna, Bowers, Dylan, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chiaro, Ben, Chih, Liang-Ying, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Curtin, Ben, Das, Sayan, Demura, Sean, De Lorenzo, Laura, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Garcia, Gonzalo, Gasca, Robert, Genois, Élie, Giang, William, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Ha, Tan, Habegger, Steve, Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Hiltermann, Reno, Hilton, Jeremy, Hong, Sabrina, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Jeffrey, Evan, Jiang, Zhang, Jin, Xiaoxuan, Joshi, Chaitali, Juhas, Pavol, Kabel, Andreas, Kang, Hui, Karamlou, Amir H., Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Klimov, Paul V., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Ledford, Justin, Lee, Kenny, Lester, Brian J., Guevel, Loïck Le, Li, Wing Yan, Li, Yin, Lill, Alexander T., Livingston, William P., Locharla, Aditya, Lucero, Erik, Lundahl, Daniel, Lunt, Aaron, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., Meeks, Seneca, Megrant, Anthony, Miao, Kevin C., Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Movassagh, Ramis, Neill, Charles, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Y., Oas, Logan, Oliver, William D., Orosco, Raymond, Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Resnick, Rachel, Rhodes, David M., Roberts, Gabrielle, Rosenberg, Eliott, Rosenfeld, Emma, Rossi, Elizabeth, Roushan, Pedram, Sankaragomathi, Kannan, Schurkus, Henry F., Shearn, Michael J., Shorter, Aaron, Shvarts, Vladimir, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Tomita, Eifu, Torres, Alfredo, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Vdovichev, Sergey, Vidal, Guifre, Heidweiller, Catherine Vollgraff, Waltman, Steven, Waltz, Jonathan, Wang, Shannon X., Ware, Brayden, Weidel, Travis, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Woodson, Maddy, Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zhang, Yaxing, Zhu, Ningfeng, Zobrist, Nicholas, Neven, Hartmut, Kohli, Pushmeet, Davies, Alex, Boixo, Sergio, Kelly, Julian, Jones, Cody, Gidney, Craig, and Satzinger, Kevin J.
- Subjects
Quantum Physics - Abstract
Quantum error correction is essential for bridging the gap between the error rates of physical devices and the extremely low logical error rates required for quantum algorithms. Recent error-correction demonstrations on superconducting processors have focused primarily on the surface code, which offers a high error threshold but poses limitations for logical operations. In contrast, the color code enables much more efficient logic, although it requires more complex stabilizer measurements and decoding techniques. Measuring these stabilizers in planar architectures such as superconducting qubits is challenging, and so far, realizations of color codes have not addressed performance scaling with code size on any platform. Here, we present a comprehensive demonstration of the color code on a superconducting processor, achieving logical error suppression and performing logical operations. Scaling the code distance from three to five suppresses logical errors by a factor of $\Lambda_{3/5}$ = 1.56(4). Simulations indicate this performance is below the threshold of the color code, and furthermore that the color code may be more efficient than the surface code with modest device improvements. Using logical randomized benchmarking, we find that transversal Clifford gates add an error of only 0.0027(3), which is substantially less than the error of an idling error correction cycle. We inject magic states, a key resource for universal computation, achieving fidelities exceeding 99% with post-selection (retaining about 75% of the data). Finally, we successfully teleport logical states between distance-three color codes using lattice surgery, with teleported state fidelities between 86.5(1)% and 90.7(1)%. This work establishes the color code as a compelling research direction to realize fault-tolerant quantum computation on superconducting processors in the near future.
- Published
- 2024
14. Resonance modes in microstructured photonic waveguides: Efficient and accurate computation based on AAA rational approximation
- Author
-
Binkowski, Felix, Betz, Fridtjof, Hammerschmidt, Martin, Zschiedrich, Lin, and Burger, Sven
- Subjects
Physics - Computational Physics ,Mathematics - Numerical Analysis ,Physics - Optics - Abstract
We present a framework for the efficient and accurate computation of resonance modes in photonic waveguides. The framework is based on AAA rational approximation with the application of special light sources. It allows one to calculate only relevant modes, such as the fundamental resonance modes localized in the central core of the waveguides. We demonstrate the framework using an example from the literature, a hollow-core photonic crystal fiber. This waveguide supports many other modes, such as cladding modes and higher-order modes. These nonrelevant modes are not calculated, so that challenging post-processing with mode filtering is not required.
- Published
- 2024
15. Constraining cosmological parameters using density split lensing and the conditional stellar mass function
- Author
-
Burger, Pierre A., Patel, Darshak A., and Hudson, Michael J.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In this work, we develop a simulation-based model to predict the excess surface mass density (ESD) depending on the local density environment. Using a conditional stellar mass function, our foreground galaxies are tailored toward the bright galaxy sample of the early data release of the Dark Energy Spectroscopic Instrument (DESI). Due to the nature of the ESD measurement, our derived model is directly applicable to all DESI data. To build this model, we use the $\texttt{AbacusSummit}$ N-body simulation suite from which we measure all necessary statistics and train an emulator based on $\texttt{CosmoPower}$. Finally, we present a cosmological parameter forecast for a possible combined analysis of DESI and the Ultraviolet Near Infrared Optical Northern Survey., Comment: 18 Pages, 16 Figures, submitted to Phys. Rev. D
- Published
- 2024
16. First Measurement of the Muon Neutrino Interaction Cross Section and Flux as a Function of Energy at the LHC with FASER
- Author
-
FASER Collaboration, Abraham, Roshan Mammen, Ai, Xiaocong, Anders, John, Antel, Claire, Ariga, Akitaka, Ariga, Tomoko, Atkinson, Jeremy, Bernlochner, Florian U., Boeckh, Tobias, Boyd, Jamie, Brenner, Lydia, Burger, Angela, Cadoux, Franck, Cardella, Roberto, Casper, David W., Cavanagh, Charlotte, Chen, Xin, Chouhan, Dhruv, Coccaro, Andrea, Débieux, Stephane, D'Onofrio, Monica, Desai, Ansh, Dmitrievsky, Sergey, Dobre, Radu, Eley, Sinead, Favre, Yannick, Fellers, Deion, Feng, Jonathan L., Fenoglio, Carlo Alberto, Ferrere, Didier, Fieg, Max, Filali, Wissal, Firu, Elena, Garabaglu, Ali, Gibson, Stephen, Gonzalez-Sevilla, Sergio, Gornushkin, Yuri, Gwilliam, Carl, Hayakawa, Daiki, Holzbock, Michael, Hsu, Shih-Chieh, Hu, Zhen, Iacobucci, Giuseppe, Inada, Tomohiro, Iodice, Luca, Jakobsen, Sune, Joos, Hans, Kajomovitz, Enrique, Kawahara, Hiroaki, Keyken, Alex, Kling, Felix, Köck, Daniela, Kontaxakis, Pantelis, Kose, Umut, Kotitsa, Rafaella, Kuehn, Susanne, Kugathasan, Thanushan, Levinson, Lorne, Li, Ke, Liu, Jinfeng, Liu, Yi, Lutz, Margaret S., MacDonald, Jack, Magliocca, Chiara, Mäkelä, Toni, McCoy, Lawson, McFayden, Josh, Medina, Andrea Pizarro, Milanesio, Matteo, Moretti, Théo, Nakamura, Mitsuhiro, Nakano, Toshiyuki, Nevay, Laurie, Ohashi, Ken, Otono, Hidetoshi, Pang, Hao, Paolozzi, Lorenzo, Pawan, Pawan, Petersen, Brian, Preda, Titi, Prim, Markus, Queitsch-Maitland, Michaela, Rokujo, Hiroki, Rubbia, André, Sabater-Iglesias, Jorge, Sato, Osamu, Scampoli, Paola, Schmieden, Kristof, Schott, Matthias, Sfyrla, Anna, Sgalaberna, Davide, Shamim, Mansoora, Shively, Savannah, Takubo, Yosuke, Tarannum, Noshin, Theiner, Ondrej, Torrence, Eric, Martinez, Oscar Ivan Valdes, Vasina, Svetlana, Vormwald, Benedikt, Wang, Di, Wang, Yuxiao, Welch, Eli, Wielers, Monika, Xu, Yue, Zahorec, Samuel, Zambito, Stefano, and Zhang, Shunliang
- Subjects
High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
This letter presents the measurement of the energy-dependent neutrino-nucleon cross section in tungsten and the differential flux of muon neutrinos and anti-neutrinos. The analysis is performed using proton-proton collision data at a center-of-mass energy of $13.6 \, {\rm TeV}$ and corresponding to an integrated luminosity of $(65.6 \pm 1.4) \, \mathrm{fb^{-1}}$. Using the active electronic components of the FASER detector, $338.1 \pm 21.0$ charged current muon neutrino interaction events are identified, with backgrounds from other processes subtracted. We unfold the neutrino events into a fiducial volume corresponding to the sensitive regions of the FASER detector and interpret the results in two ways: We use the expected neutrino flux to measure the cross section, and we use the predicted cross section to measure the neutrino flux. Both results are presented in six bins of neutrino energy, achieving the first differential measurement in the TeV range. The observed distributions align with Standard Model predictions. Using this differential data, we extract the contributions of neutrinos from pion and kaon decays.
- Published
- 2024
17. Noise Injection Reveals Hidden Capabilities of Sandbagging Language Models
- Author
-
Tice, Cameron, Kreer, Philipp Alexander, Helm-Burger, Nathan, Shahani, Prithviraj Singh, Ryzhenkov, Fedor, Haimes, Jacob, Hofstätter, Felix, and van der Weij, Teun
- Subjects
Computer Science - Artificial Intelligence ,Computer Science - Cryptography and Security - Abstract
Capability evaluations play a critical role in ensuring the safe deployment of frontier AI systems, but this role may be undermined by intentional underperformance or ``sandbagging.'' We present a novel model-agnostic method for detecting sandbagging behavior using noise injection. Our approach is founded on the observation that introducing Gaussian noise into the weights of models either prompted or fine-tuned to sandbag can considerably improve their performance. We test this technique across a range of model sizes and multiple-choice question benchmarks (MMLU, AI2, WMDP). Our results demonstrate that noise injected sandbagging models show performance improvements compared to standard models. Leveraging this effect, we develop a classifier that consistently identifies sandbagging behavior. Our unsupervised technique can be immediately implemented by frontier labs or regulatory bodies with access to weights to improve the trustworthiness of capability evaluations., Comment: Published at NeurIPS 2024, SATA and SoLaR workshop, 6 pages, 4 figures, 1 table, code available at https://github.com/camtice/SandbagDetect
- Published
- 2024
18. Towards Foundation Models for Critical Care Time Series
- Author
-
Burger, Manuel, Sergeev, Fedor, Londschien, Malte, Chopard, Daphné, Yèche, Hugo, Gerdes, Eike, Leshetkina, Polina, Morgenroth, Alexander, Babür, Zeynep, Bogojeska, Jasmina, Faltys, Martin, Kuznetsova, Rita, and Rätsch, Gunnar
- Subjects
Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
Notable progress has been made in generalist medical large language models across various healthcare areas. However, large-scale modeling of in-hospital time series data - such as vital signs, lab results, and treatments in critical care - remains underexplored. Existing datasets are relatively small, but combining them can enhance patient diversity and improve model robustness. To effectively utilize these combined datasets for large-scale modeling, it is essential to address the distribution shifts caused by varying treatment policies, necessitating the harmonization of treatment variables across the different datasets. This work aims to establish a foundation for training large-scale multi-variate time series models on critical care data and to provide a benchmark for machine learning models in transfer learning across hospitals to study and address distribution shift challenges. We introduce a harmonized dataset for sequence modeling and transfer learning research, representing the first large-scale collection to include core treatment variables. Future plans involve expanding this dataset to support further advancements in transfer learning and the development of scalable, generalizable models for critical healthcare applications., Comment: Accepted for Oral Presentation at AIM-FM Workshop at NeurIPS 2024
- Published
- 2024
19. A Tunable Despeckling Neural Network Stabilized via Diffusion Equation
- Author
-
Ran, Yi, Guo, Zhichang, Li, Jia, Li, Yao, Burger, Martin, and Wu, Boying
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Electrical Engineering and Systems Science - Image and Video Processing - Abstract
The removal of multiplicative Gamma noise is a critical research area in the application of synthetic aperture radar (SAR) imaging, where neural networks serve as a potent tool. However, real-world data often diverges from theoretical models, exhibiting various disturbances, which makes the neural network less effective. Adversarial attacks can be used as a criterion for judging the adaptability of neural networks to real data, since adversarial attacks can find the most extreme perturbations that make neural networks ineffective. In this work, the diffusion equation is designed as a regularization block to provide sufficient regularity to the whole neural network, due to its spontaneous dissipative nature. We propose a tunable, regularized neural network framework that unrolls a shallow denoising neural network block and a diffusion regularity block into a single network for end-to-end training. The linear heat equation, known for its inherent smoothness and low-pass filtering properties, is adopted as the diffusion regularization block. In our model, a single time step hyperparameter governs the smoothness of the outputs and can be adjusted dynamically, significantly enhancing flexibility. The stability and convergence of our model are theoretically proven. Experimental results demonstrate that the proposed model effectively eliminates high-frequency oscillations induced by adversarial attacks. Finally, the proposed model is benchmarked against several state-of-the-art denoising methods on simulated images, adversarial samples, and real SAR images, achieving superior performance in both quantitative and visual evaluations.
- Published
- 2024
20. Single-Shot Ionization-Based Transverse Profile Monitor for Pulsed Electron Beams
- Author
-
Denham, Paul, Ody, Alex, Musumeci, Pietro, Burger, Nathan, Cook, Nathan, and Andonian, Gerard
- Subjects
Physics - Instrumentation and Detectors ,Physics - Applied Physics - Abstract
We present an experimental demonstration of a single-shot, non-destructive electron beam diagnostic based on the ionization of a low-density pulsed gas jet. In our study, 7~MeV electron bunches from a radio frequency (RF) photoinjector, carrying up to 100 pC of charge, traversed a localized distribution of nitrogen gas (N$_2$). The interaction of the electron bunches with the N$_2$ gas generated a correlated signature in the ionized particle distribution, which was spatially magnified using a series of electrostatic lenses and recorded with a micro-channel-plate detector. Various modalities, including point-to-point imaging and velocity mapping, are investigated. A temporal trace of the detector current enabled the identification of single- and double-ionization events. The characteristics of the ionization distribution, dependence on gas density, total bunch charge, and other parameters, are described. Approaches to scaling to higher electron bunch density and energy are suggested. Additionally, the instrument proves useful for comprehensive studies of the ionization process itself., Comment: Phys. Rev. Applied - Accepted 7 November, 2024
- Published
- 2024
21. Towards Context-Rich Automated Biodiversity Assessments: Deriving AI-Powered Insights from Camera Trap Data
- Author
-
Fergus, Paul, Chalmers, Carl, Matthews, Naomi, Nixon, Stuart, Burger, Andre, Hartley, Oliver, Sutherland, Chris, Lambin, Xavier, Longmore, Steven, and Wich, Serge
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
Camera traps offer enormous new opportunities in ecological studies, but current automated image analysis methods often lack the contextual richness needed to support impactful conservation outcomes. Here we present an integrated approach that combines deep learning-based vision and language models to improve ecological reporting using data from camera traps. We introduce a two-stage system: YOLOv10-X to localise and classify species (mammals and birds) within images, and a Phi-3.5-vision-instruct model to read YOLOv10-X binding box labels to identify species, overcoming its limitation with hard to classify objects in images. Additionally, Phi-3.5 detects broader variables, such as vegetation type, and time of day, providing rich ecological and environmental context to YOLO's species detection output. When combined, this output is processed by the model's natural language system to answer complex queries, and retrieval-augmented generation (RAG) is employed to enrich responses with external information, like species weight and IUCN status (information that cannot be obtained through direct visual analysis). This information is used to automatically generate structured reports, providing biodiversity stakeholders with deeper insights into, for example, species abundance, distribution, animal behaviour, and habitat selection. Our approach delivers contextually rich narratives that aid in wildlife management decisions. By providing contextually rich insights, our approach not only reduces manual effort but also supports timely decision-making in conservation, potentially shifting efforts from reactive to proactive management., Comment: 32 Pages, 22 images
- Published
- 2024
22. Hypergraph $p$-Laplacian equations for data interpolation and semi-supervised learning
- Author
-
Shi, Kehan and Burger, Martin
- Subjects
Mathematics - Numerical Analysis ,Computer Science - Machine Learning ,35R02, 65D05 - Abstract
Hypergraph learning with $p$-Laplacian regularization has attracted a lot of attention due to its flexibility in modeling higher-order relationships in data. This paper focuses on its fast numerical implementation, which is challenging due to the non-differentiability of the objective function and the non-uniqueness of the minimizer. We derive a hypergraph $p$-Laplacian equation from the subdifferential of the $p$-Laplacian regularization. A simplified equation that is mathematically well-posed and computationally efficient is proposed as an alternative. Numerical experiments verify that the simplified $p$-Laplacian equation suppresses spiky solutions in data interpolation and improves classification accuracy in semi-supervised learning. The remarkably low computational cost enables further applications., Comment: 16 pages
- Published
- 2024
23. Loop Quantum Photonic Chip for Coherent Multi-Time-Step Evolution
- Author
-
Zhan, Yuancheng, Zhang, Hui, Erbanni, Rebecca, Burger, Andreas, Wan, Lingxiao, Jiang, Xudong, Chae, Sanghoon, Liu, Aiqun, Poletti, Dario, and Kwek, Leong Chuan
- Subjects
Quantum Physics - Abstract
Quantum evolution is crucial for the understanding of complex quantum systems. However, current implementations of time evolution on quantum photonic platforms face challenges of limited light source efficiency due to propagation loss and merely single-layer complexity. In this work, we present a loop quantum photonic chip (Loop-QPC) designed to efficiently simulate quantum dynamics over multiple time steps in a single chip. Our approach employs a recirculating loop structure to reuse computational resources and eliminate the need for multiple quantum tomography steps or chip reconfigurations. We experimentally demonstrate the dynamics of the spin-boson model on a low-loss Silicon Nitride (SiN) integrated photonic chip. The Loop-QPC achieves a three-step unitary evolution closely matching the theoretical predictions. These results establish the Loop-QPC as a promising method for efficient and scalable quantum simulation, advancing the development of quantum simulation on programmable photonic circuits.
- Published
- 2024
24. Cholesky Decomposition and the Second-Derivative Two-Electron Integrals Required for the Computation of Magnetizabilities using Gauge-Including Atomic Orbitals
- Author
-
Burger, Sophia, Stopkowicz, Stella, and Gauss, Jürgen
- Subjects
Physics - Chemical Physics - Abstract
The computation of magnetizability tensors using gauge-including atomic orbitals is discussed in the context of Cholesky decomposition for the two-electron repulsion integrals with a focus on the involved doubly differentiated integrals. Three schemes for their handling are suggested: the first exploits the DF aspect of Cholesky decomposition, the second uses expressions obtained by differentiating the CD expression for the unperturbed two electron integrals, while the third addresses the issue that the first two schemes are not able to represent the doubly differentiated integrals with arbitrary accuracy. This scheme uses a separate Cholesky decomposition for the cross terms in the doubly differentiated two-electron integrals. Test calculations reveal that all three schemes are able to represent the integrals with similar accuracy and yield indistinguishable results for the values of the computed magnetizability tensor elements. Thus, we recommend our first scheme which has the lowest computational cost for routine computations. The applicability of our CD schemes is further shown in large-scale Hartree-Fock calculations of the magnetizability tensor of coronene (C24H12) with a doubly polarized triple-zeta basis consisting of 684 basis functions.
- Published
- 2024
25. High-Statistics Measurement of the Cosmic-Ray Electron Spectrum with H.E.S.S
- Author
-
Aharonian, F., Benkhali, F. Ait, Aschersleben, J., Ashkar, H., Backes, M., Martins, V. Barbosa, Batzofin, R., Becherini, Y., Berge, D., Bernlöhr, K., Bi, B., Böttcher, M., Boisson, C., Bolmont, J., de Lavergne, M. de Bony, Borowska, J., Bouyahiaoui, M., Brose, R., Brown, A., Brun, F., Bruno, B., Bulik, T., Burger-Scheidlin, C., Bylund, T., Casanova, S., Celic, J., Cerruti, M., Chand, T., Chandra, S., Chen, A., Chibueze, J., Chibueze, O., Collins, T., Cotter, G., Mbarubucyeye, J. Damascene, Devin, J., Djuvsland, J., Dmytriiev, A., Egberts, K., Einecke, S., Ernenwein, J. -P., Fegan, S., Feijen, K., Fontaine, G., Funk, S., Gabici, S., Gallant, Y. A., Glicenstein, J. F., Glombitza, J., Grolleron, G., Heß, B., Hofmann, W., Holch, T. L., Holler, M., Horns, D., Huang, Zhiqiu, Jamrozy, M., Jankowsky, F., Joshi, V., Jung-Richardt, I., Kasai, E., Katarzynski, K., Kerszberg, D., Khatoon, R., Khelifi, B., Kluzniak, W., Komin, Nu., Kosack, K., Kostunin, D., Kundu, A., Lang, R. G., Stum, S. Le, Leitl, F., Lemiere, A., Lemoine-Goumard, M., Lenain, J. -P., Leuschner, F., Luashvili, A., Mackey, J., Malyshev, D., Marandon, V., Marinos, P., Marti-Devesa, G., Marx, R., Meyer, M., Mitchell, A., Moderski, R., Moghadam, M. O., Mohrmann, L., Montanari, A., Moulin, E., de Naurois, M., Niemiec, J., Ohm, S., Olivera-Nieto, L., Wilhelmi, E. de Ona, Ostrowski, M., Panny, S., Panter, M., Parsons, D., Pensec, U., Peron, G., Pühlhofer, G., Punch, M., Quirrenbach, A., Ravikularaman, S., Regeard, M., Reimer, A., Reimer, O., Reis, I., Ren, H., Reville, B., Rieger, F., Rowell, G., Rudak, B., Ruiz-Velasco, E., Sahakian, V., Salzmann, H., Santangelo, A., Sasaki, M., Schäfer, J., Schüssler, F., Schutte, H. M., Shapopi, J. N. S., Sharma, A., Sol, H., Spencer, S., Stawarz, L., Steinmassl, S., Steppa, C., Suzuki, H., Takahashi, T., Tanaka, T., Taylor, A. M., Terrier, R., Tsirou, M., van Eldik, C., Vecchi, M., Venter, C., Vink, J., Wach, T., Wagner, S. J., Wierzcholska, A., Zacharias, M., Zdziarski, A. A., Zech, A., and Zywucka, N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Owing to their rapid cooling rate and hence loss-limited propagation distance, cosmic-ray electrons and positrons (CRe) at very high energies probe local cosmic-ray accelerators and provide constraints on exotic production mechanisms such as annihilation of dark matter particles. We present a high-statistics measurement of the spectrum of CRe candidate events from 0.3 to 40 TeV with the High Energy Stereoscopic System (H.E.S.S.), covering two orders of magnitude in energy and reaching a proton rejection power of better than $10^{4}$. The measured spectrum is well described by a broken power law, with a break around 1 TeV, where the spectral index increases from $\Gamma_1 = 3.25$ $\pm$ 0.02 (stat) $\pm$ 0.2 (sys) to $\Gamma_2 = 4.49$ $\pm$ 0.04 (stat) $\pm$ 0.2 (sys). Apart from the break, the spectrum is featureless. The absence of distinct signatures at multi-TeV energies imposes constraints on the presence of nearby CRe accelerators and the local CRe propagation mechanisms., Comment: main paper: 8 pages, 4 figures, supplemental material: 12 pages, 14 figures, accepted for publication in Physical Review Letters https://journals.aps.org/prl/
- Published
- 2024
- Full Text
- View/download PDF
26. GraphXForm: Graph transformer for computer-aided molecular design with application to extraction
- Author
-
Pirnay, Jonathan, Rittig, Jan G., Wolf, Alexander B., Grohe, Martin, Burger, Jakob, Mitsos, Alexander, and Grimm, Dominik G.
- Subjects
Computer Science - Machine Learning ,Physics - Chemical Physics ,Quantitative Biology - Biomolecules - Abstract
Generative deep learning has become pivotal in molecular design for drug discovery and materials science. A widely used paradigm is to pretrain neural networks on string representations of molecules and fine-tune them using reinforcement learning on specific objectives. However, string-based models face challenges in ensuring chemical validity and enforcing structural constraints like the presence of specific substructures. We propose to instead combine graph-based molecular representations, which can naturally ensure chemical validity, with transformer architectures, which are highly expressive and capable of modeling long-range dependencies between atoms. Our approach iteratively modifies a molecular graph by adding atoms and bonds, which ensures chemical validity and facilitates the incorporation of structural constraints. We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned using a new training algorithm that combines elements of the deep cross-entropy method with self-improvement learning from language modeling, allowing stable fine-tuning of deep transformers with many layers. We evaluate GraphXForm on two solvent design tasks for liquid-liquid extraction, showing that it outperforms four state-of-the-art molecular design techniques, while it can flexibly enforce structural constraints or initiate the design from existing molecular structures.
- Published
- 2024
27. Preference of mHealth versus in-person treatment for depression and post-traumatic stress disorder in Kenya: demographic and clinical characteristics.
- Author
-
Meffert, Susan, Mathai, Muthoni, Neylan, Thomas, Mwai, Daniel, Onyango, Dickens, Rota, Grace, Otieno, Ammon, Obura, Raymond, Wangia, Josline, Opiyo, Elizabeth, Muchembre, Peter, Oluoch, Dennis, Wambura, Raphael, Mbwayo, Anne, Kahn, James, Cohen, Craig, Bukusi, David, Aarons, Gregory, Burger, Rachel, Jin, Chengshi, McCulloch, Charles, Kahonge, Simon, and Ongeri, Linnet
- Subjects
Anxiety disorders ,COVID-19 ,Clinical Trial ,Depression & mood disorders ,PUBLIC HEALTH ,Telemedicine ,Humans ,Kenya ,Stress Disorders ,Post-Traumatic ,Telemedicine ,Male ,Female ,Adult ,COVID-19 ,Middle Aged ,Patient Preference ,Depressive Disorder ,Major ,Primary Health Care ,SARS-CoV-2 ,Young Adult - Abstract
OBJECTIVES: We conducted an implementation science mental health treatment study in western Kenya, testing strategies for scale up of evidence-based mental health services for common adult disorders using a non-specialist workforce, integrated with existing primary care (Sequential Multiple, Assignment Randomized Trial of non-specialist-delivered psychotherapy (Interpersonal Psychotherapy) and/or medication (fluoxetine) for major depression and post-traumatic stress disorder (PTSD) (SMART DAPPER)). Because study launch coincided with the COVID-19 pandemic, participants were allowed to attend treatment visits via mHealth (audio-only mobile phone) or in-person. We conducted a secondary data analysis of the parent study to evaluate preference for mHealth or in-person treatment among our study participants, including rationale for choosing in-person or mHealth treatment modality, and comparison of baseline demographic and clinical characteristics. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS: Participants were public sector primary care patients at Kisumu County Hospital in western Kenya with major depression and/or PTSD and were individually randomised to non-specialist delivery of evidence-based psychotherapy or medication (n=2162). OUTCOMES: Treatment modality preference and rationale were ascertained before randomised assignment to treatment arm (psychotherapy or medication). The parent SMART DAPPER study baseline assessment included core demographic (age, gender, relationship status, income, clinic transport time and cost) and clinical data (eg, depression and PTSD symptoms, trauma exposures, medical comorbidities and history of mental healthcare). Given that this evaluation of mHealth treatment preference sought to identify the demographic and clinical characteristics of participants who chose in-person or mHealth treatment modality, we included most SMART DAPPER core measurement domains (not all subcategories). RESULTS: 649 (30.3%) SMART DAPPER participants preferred treatment via mHealth, rather than in person. The most cited rationales for choosing mHealth were affordability (18.5%) (eg, no transportation cost) and convenience (12.9%). On multivariate analysis, compared with those who preferred in-person treatment, participants who chose mHealth were younger and had higher constraints on receiving in-person treatment, including transport time 1.004 (1.00, 1.007) and finances 0.757 (0.612, 0.936). Higher PTSD symptoms 0.527 (0.395, 0.702) and higher disability 0.741 (0.559, 0.982) were associated with preference for in-person treatment. CONCLUSIONS: To our knowledge, this is the first study of public sector mental healthcare delivered by non-specialists via mHealth for major depression and/or PTSD in Sub-Saharan Africa. Our finding that mHealth treatment is preferred by approximately one-third of participants, particularly younger individuals with barriers to in-person care, may inform future mHealth research to (1) address knowledge gaps in mental health service implementation and (2) improve mental healthcare access to evidence-based treatment. TRIAL REGISTRATION NUMBER: NCT03466346.
- Published
- 2024
28. Empowering Autonomous Shuttles with Next-Generation Infrastructure
- Author
-
Ochs, Sven, Yazgan, Melih, Polley, Rupert, Schotschneider, Albert, Orf, Stefan, Uecker, Marc, Zipfl, Maximilian, Burger, Julian, Vivekanandan, Abhishek, Amritzer, Jennifer, Zofka, Marc René, and Zöllner, J. Marius
- Subjects
Computer Science - Robotics - Abstract
As cities strive to address urban mobility challenges, combining autonomous transportation technologies with intelligent infrastructure presents an opportunity to transform how people move within urban environments. Autonomous shuttles are particularly suited for adaptive and responsive public transport for the first and last mile, connecting with smart infrastructure to enhance urban transit. This paper presents the concept, implementation, and evaluation of a proof-of-concept deployment of an autonomous shuttle integrated with smart infrastructure at a public fair. The infrastructure includes two perception-equipped bus stops and a connected pedestrian intersection, all linked through a central communication and control hub. Our key contributions include the development of a comprehensive system architecture for "smart" bus stops, the integration of multiple urban locations into a cohesive smart transport ecosystem, and the creation of adaptive shuttle behavior for automated driving. Additionally, we publish an open source dataset and a Vehicle-to-X (V2X) driver to support further research. Finally, we offer an outlook on future research directions and potential expansions of the demonstrated technologies and concepts., Comment: Accepted by ECCV 2024 Workshop MAAS
- Published
- 2024
29. The graph $\infty$-Laplacian eigenvalue problem
- Author
-
Deidda, Piero, Burger, Martin, Putti, Mario, and Tudisco, Francesco
- Subjects
Mathematics - Spectral Theory - Abstract
We analyze various formulations of the $\infty$-Laplacian eigenvalue problem on graphs, comparing their properties and highlighting their respective advantages and limitations. First, we investigate the graph $\infty$-eigenpairs arising as limits of $p$-Laplacian eigenpairs, extending key results from the continuous setting to the discrete domain. We prove that every limit of $p$-Laplacian eigenpair, for $p$ going to $\infty$, satisfies a limit eigenvalue equation and establish that the corresponding eigenvalue can be bounded from below by the packing radius of the graph, indexed by the number of nodal domains induced by the eigenfunction. Additionally, we show that the limits, for $p$ going to $\infty$, of the variational $p$-Laplacian eigenvalues are bounded both from above and from below by the packing radii, achieving equality for the smallest two variational eigenvalues and corresponding packing radii of the graph. In the second part of the paper, we introduce generalized $\infty$-Laplacian eigenpairs as generalized critical points and values of the $\infty$-Rayleigh quotient. We prove that the generalized variational $\infty$-eigenvalues satisfy the same upper bounds in terms of packing radii as the limit of the variational eigenvalues, again with equality holding between the smallest two $\infty$-variational eigenvalues and the first and second packing radii of the graph. Moreover, we establish that any solution to the limit eigenvalue equation is also a generalized eigenpair, while any generalized eigenpair satisfies the limit eigenvalue equation on a suitable subgraph.
- Published
- 2024
30. Shining Light on the Dark Sector: Search for Axion-like Particles and Other New Physics in Photonic Final States with FASER
- Author
-
FASER collaboration, Abraham, Roshan Mammen, Ai, Xiaocong, Anders, John, Antel, Claire, Ariga, Akitaka, Ariga, Tomoko, Atkinson, Jeremy, Bernlochner, Florian U., Bianchi, Emma, Boeckh, Tobias, Boyd, Jamie, Brenner, Lydia, Burger, Angela, Cadoux, Franck, Cardella, Roberto, Casper, David W., Cavanagh, Charlotte, Chen, Xin, Cho, Eunhyung, Chouhan, Dhruv, Coccaro, Andrea, Débieux, Stephane, D'Onofrio, Monica, Desai, Ansh, Dmitrievsky, Sergey, Dobre, Radu, Eley, Sinead, Favre, Yannick, Fellers, Deion, Feng, Jonathan L., Fenoglio, Carlo Alberto, Ferrere, Didier, Fieg, Max, Filali, Wissal, Firu, Elena, Galantay, Edward, Garabaglu, Ali, Gibson, Stephen, Gonzalez-Sevilla, Sergio, Gornushkin, Yuri, Gwilliam, Carl, Hayakawa, Daiki, Holzbock, Michael, Hsu, Shih-Chieh, Hu, Zhen, Iacobucci, Giuseppe, Inada, Tomohiro, Iodice, Luca, Jakobsen, Sune, Joos, Hans, Kajomovitz, Enrique, Kawahara, Hiroaki, Keyken, Alex, Kling, Felix, Köck, Daniela, Kontaxakis, Pantelis, Kose, Umut, Kotitsa, Rafaella, Kuehn, Susanne, Kugathasan, Thanushan, Levinson, Lorne, Li, Ke, Liu, Jinfeng, Liu, Yi, Lutz, Margaret S., MacDonald, Jack, Magliocca, Chiara, Mäkelä, Toni, McCoy, Lawson, McFayden, Josh, Medina, Andrea Pizarro, Milanesio, Matteo, Moretti, Théo, Nakamura, Mitsuhiro, Nakano, Toshiyuki, Nevay, Laurie, Ohashi, Ken, Otono, Hidetoshi, Paolozzi, Lorenzo, Petersen, Brian, Preda, Titi, Prim, Markus, Queitsch-Maitland, Michaela, Rokujo, Hiroki, Rubbia, André, Sabater-Iglesias, Jorge, Sato, Osamu, Scampoli, Paola, Schmieden, Kristof, Schott, Matthias, Sfyrla, Anna, Sgalaberna, Davide, Shamim, Mansoora, Shively, Savannah, Takubo, Yosuke, Tarannum, Noshin, Theiner, Ondrej, Torrence, Eric, Martinez, Oscar Ivan Valdes, Vasina, Svetlana, Vormwald, Benedikt, Wang, Di, Wang, Yuxiao, Welch, Eli, Xu, Yue, Zahorec, Samuel, Zambito, Stefano, and Zhang, Shunliang
- Subjects
High Energy Physics - Experiment - Abstract
The first FASER search for a light, long-lived particle decaying into a pair of photons is reported. The search uses LHC proton-proton collision data at $\sqrt{s}=13.6~\text{TeV}$ collected in 2022 and 2023, corresponding to an integrated luminosity of $57.7\text{fb}^{-1}$. A model with axion-like particles (ALPs) dominantly coupled to weak gauge bosons is the primary target. Signal events are characterised by high-energy deposits in the electromagnetic calorimeter and no signal in the veto scintillators. One event is observed, compared to a background expectation of $0.44 \pm 0.39$ events, which is entirely dominated by neutrino interactions. World-leading constraints on ALPs are obtained for masses up to $300~\text{MeV}$ and couplings to the Standard Model W gauge boson, $g_{aWW}$, around $10^{-4}$ GeV$^{-1}$, testing a previously unexplored region of parameter space. Other new particle models that lead to the same experimental signature, including ALPs coupled to gluons or photons, U(1)$_B$ gauge bosons, up-philic scalars, and a Type-I two-Higgs doublet model, are also considered for interpretation, and new constraints on previously viable parameter space are presented in this paper., Comment: 37 pages, 22 figures
- Published
- 2024
31. Observation of disorder-free localization and efficient disorder averaging on a quantum processor
- Author
-
Gyawali, Gaurav, Cochran, Tyler, Lensky, Yuri, Rosenberg, Eliott, Karamlou, Amir H., Kechedzhi, Kostyantyn, Berndtsson, Julia, Westerhout, Tom, Asfaw, Abraham, Abanin, Dmitry, Acharya, Rajeev, Beni, Laleh Aghababaie, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Astrakhantsev, Nikita, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Das, Sayan, Debroy, Dripto M., De Lorenzo, Laura, Barba, Alexander Del Toro, Demura, Sean, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Earle, Clint, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Faoro, Lara, Fatemi, Reza, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Giang, William, Gidney, Craig, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heslin, Stephen, Heu, Paula, Hill, Gordon, Hilton, Jeremy, Hoffmann, Markus R., Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Ioffe, Lev B., Isakov, Sergei V., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Jordan, Stephen, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kieferová, Mária, Kim, Seon, Klimov, Paul V., Klots, Andrey R., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Guevel, Loïck Le, Ledford, Justin, Lee, Joonho, Lee, Kenny, Lester, Brian J., Li, Wing Yan, Lill, Alexander T., Liu, Wayne, Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Steven, Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Mi, Xiao, Miao, Kevin C., Mieszala, Amanda, Molina, Sebastian, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Neill, Charles, Nersisyan, Ani, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Pryadko, Leonid P., Quintana, Chris, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Rocque, Charles, Rubin, Nicholas C., Saei, Negar, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Skruzny, Jindra, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szalay, Marco, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torunbalci, M. Mert, Vaishnav, Abeer, Vdovichev, Sergey, Vidal, Guifré, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobrist, Nicholas, Boixo, Sergio, Kelly, Julian, Lucero, Erik, Chen, Yu, Smelyanskiy, Vadim, Neven, Hartmut, Kovrizhin, Dmitry, Knolle, Johannes, Halimeh, Jad C., Aleiner, Igor, Moessner, Roderich, and Roushan, Pedram
- Subjects
Quantum Physics ,Condensed Matter - Disordered Systems and Neural Networks ,Condensed Matter - Strongly Correlated Electrons ,High Energy Physics - Lattice - Abstract
One of the most challenging problems in the computational study of localization in quantum manybody systems is to capture the effects of rare events, which requires sampling over exponentially many disorder realizations. We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations. We observe localization without disorder in quantum many-body dynamics in one and two dimensions: perturbations do not diffuse even though both the generator of evolution and the initial states are fully translationally invariant. The disorder strength as well as its density can be readily tuned using the initial state. Furthermore, we demonstrate the versatility of our platform by measuring Renyi entropies. Our method could also be extended to higher moments of the physical observables and disorder learning.
- Published
- 2024
32. KiDS-Legacy: Covariance validation and the unified OneCovariance framework for projected large-scale structure observables
- Author
-
Reischke, Robert, Unruh, Sandra, Asgari, Marika, Dvornik, Andrej, Hildebrandt, Hendrik, Joachimi, Benjamin, Porth, Lucas, von Wietersheim-Kramsta, Maximilian, Busch, Jan Luca van den, Stölzner, Benjamin, Wright, Angus H., Yan, Ziang, Bilicki, Maciej, Burger, Pierre, Chisari, Nora Elisa, Harnois-Deraps, Joachim, Georgiou, Christos, Heymans, Catherine, Jalan, Priyanka, Joudaki, Shahab, Kuijken, Konrad, Li, Shun-Sheng, Linke, Laila, Mahony, Constance, Sciotti, Davide, Tröster, Tilman, and Yoon, Mijin
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We introduce OneCovariance, an open-source software designed to accurately compute covariance matrices for an arbitrary set of two-point summary statistics across a variety of large-scale structure tracers. Utilising the halo model, we estimate the statistical properties of matter and biased tracer fields, incorporating all Gaussian, non-Gaussian, and super-sample covariance terms. The flexible configuration permits user-specific parameters, such as the complexity of survey geometry, the halo occupation distribution employed to define each galaxy sample, or the form of the real-space and/or Fourier space statistics to be analysed. We illustrate the capabilities of OneCovariance within the context of a cosmic shear analysis of the final data release of the Kilo-Degree Survey (KiDS-Legacy). Upon comparing our estimated covariance with measurements from mock data and calculations from independent software, we ascertain that OneCovariance achieves accuracy at the per cent level. When assessing the impact of ignoring complex survey geometry in the cosmic shear covariance computation, we discover misestimations at approximately the $10\%$ level for cosmic variance terms. Nonetheless, these discrepancies do not significantly affect the KiDS-Legacy recovery of cosmological parameters. We derive the cross-covariance between real-space correlation functions, bandpowers, and COSEBIs, facilitating future consistency tests among these three cosmic shear statistics. Additionally, we calculate the covariance matrix of photometric-spectroscopic galaxy clustering measurements, validating Jackknife covariance estimates for calibrating KiDS-Legacy redshift distributions. The OneCovariance can be found on github Hub together with a comprehensive documentation and examples., Comment: 37 pages, 11 figures, to be submitted to A&A, code available at https://github.com/rreischke/OneCovariance
- Published
- 2024
33. On minimizing the Wiener index of unicyclic graphs with fixed girth and given degree sequence
- Author
-
Burger, Alewyn P. and Rakotonarivo, Valisoa R. M.
- Subjects
Mathematics - Combinatorics ,05C35 - Abstract
The Wiener index of a graph is the sum of all the distances between any pair of vertices. We aim to describe graphs which minimize the Wiener index among all unicyclic graphs with fixed girth and given degree sequence. Depending on where the centroid of the graph is, we will present three candidates for the minimization, namely the greedy unicyclic graph, the cycle-centered graph and the out-greedy unicyclic graph., Comment: 24 pages
- Published
- 2024
34. 6x2pt: Forecasting gains from joint weak lensing and galaxy clustering analyses with spectroscopic-photometric galaxy cross-correlations
- Author
-
Johnston, Harry, Chisari, Nora Elisa, Joudaki, Shahab, Reischke, Robert, Stölzner, Benjamin, Loureiro, Arthur, Mahony, Constance, Unruh, Sandra, Wright, Angus H., Asgari, Marika, Bilicki, Maciej, Burger, Pierre, Dvornik, Andrej, Georgiou, Christos, Giblin, Benjamin, Heymans, Catherine, Hildebrandt, Hendrik, Joachimi, Benjamin, Kuijken, Konrad, Li, Shun-Sheng, Linke, Laila, Porth, Lucas, Shan, HuanYuan, Tröster, Tilman, Busch, Jan Luca van den, von Wietersheim-Kramsta, Maximilian, Yan, Ziang, and Zhang, Yun-Hao
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We explore the enhanced self-calibration of photometric galaxy redshift distributions, $n(z)$, through the combination of up to six two-point functions. Our $\rm 3\times2pt$ configuration is comprised of photometric shear, spectroscopic galaxy clustering, and spectroscopic-photometric galaxy-galaxy lensing (GGL). We further include spectroscopic-photometric cross-clustering; photometric GGL; and photometric auto-clustering, using the photometric shear sample as density tracer. We perform simulated likelihood forecasts of the cosmological and nuisance parameter constraints for Stage-III- and Stage-IV-like surveys. For the Stage-III-like case, we employ realistic but perturbed redshift distributions, and distinguish between "coherent" shifting in one direction, versus more internal scattering and full-shape errors. For perfectly known $n(z)$, a $\rm 6\times2pt$ analysis gains $\sim40\%$ in Figure of Merit (FoM) in the $S_8\equiv\sigma_8\sqrt{\Omega_{\rm m}/0.3}$ and $\Omega_{\rm m}$ plane relative to the $\rm 3\times2pt$ analysis. If untreated, coherent and incoherent redshift errors lead to inaccurate inferences of $S_8$ and $\Omega_{\rm m}$, respectively. Employing bin-wise scalar shifts $\delta{z}_i$ in the tomographic mean redshifts reduces cosmological parameter biases, with a $\rm 6x2pt$ analysis constraining the shift parameters with $2-4$ times the precision of a photometric $\rm 3^{ph}\times2pt$ analysis. For the Stage-IV-like survey, a $\rm 6\times2pt$ analysis doubles the FoM($\sigma_8{-}\Omega_{\rm m}$) compared to any $\rm 3\times2pt$ or $\rm 3^{ph}\times2pt$ analysis, and is only $8\%$ less constraining than if the $n(z)$ were perfectly known. A Gaussian mixture model for the $n(z)$ reduces mean-redshift errors and preserves the $n(z)$ shape. It also yields the most accurate and precise cosmological constraints for any $N\rm\times2pt$ configuration given $n(z)$ biases., Comment: 38 pages, 20 figures, to be submitted to A&A
- Published
- 2024
35. Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories
- Author
-
Cochran, Tyler A., Jobst, Bernhard, Rosenberg, Eliott, Lensky, Yuri D., Gyawali, Gaurav, Eassa, Norhan, Will, Melissa, Abanin, Dmitry, Acharya, Rajeev, Beni, Laleh Aghababaie, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Atalaya, Juan, Babbush, Ryan, Ballard, Brian, Bardin, Joseph C., Bengtsson, Andreas, Bilmes, Alexander, Bourassa, Alexandre, Bovaird, Jenna, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Zijun, Chiaro, Ben, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Curtin, Ben, Das, Sayan, Demura, Sean, De Lorenzo, Laura, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Gasca, Robert, Genois, Élie, Giang, William, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heu, Paula, Higgott, Oscar, Hilton, Jeremy, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Karamlou, Amir H., Kechedzhi, Kostyantyn, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Klimov, Paul V., Kobrin, Bryce, Korotkov, Alexander N., Kostritsa, Fedor, Kreikebaum, John Mark, Kurilovich, Vladislav D., Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Lau, Kim-Ming, Ledford, Justin, Lee, Kenny, Lester, Brian J., Guevel, Loïck Le, Li, Wing Yan, Lill, Alexander T., Livingston, William P., Locharla, Aditya, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Maloney, Ashley, Mandrà, Salvatore, Martin, Leigh S., Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Miao, Kevin C., Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Movassagh, Ramis, Neill, Charles, Newman, Michael, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, Niu, Murphy Yuezhen, Oliver, William D., Ottosson, Kristoffer, Pizzuto, Alex, Potter, Rebecca, Pritchard, Orion, Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Sivak, Volodymyr, Small, Spencer, Smith, W. Clarke, Springer, Sofia, Sterling, George, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Vdovichev, Sergey, Vidal, Guifre, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., Ware, Brayden, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, Zobris, Nicholas, Boixo, Sergio, Kelly, Julian, Lucero, Erik, Chen, Yu, Smelyanskiy, Vadim, Neven, Hartmut, Gammon-Smith, Adam, Pollmann, Frank, Knap, Michael, and Roushan, Pedram
- Subjects
Quantum Physics ,Condensed Matter - Strongly Correlated Electrons ,High Energy Physics - Lattice - Abstract
Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics.
- Published
- 2024
36. Modeling luminescent coupling in multi-junction solar cells: Perovskite Silicon tandem case study
- Author
-
Manley, Phillip, Hammerschmidt, Martin, Zschiedrich, Lin, Jäger, Klaus, Becker, Christiane, and Burger, Sven
- Subjects
Physics - Optics ,Physics - Applied Physics - Abstract
Luminescent coupling is a characteristic of multi-junction solar cells which has often been neglected in models of their performance. The effect describes the absorption of light emitted from a higher band gap semiconductor by a lower band gap semiconductor. In this way, light which might have been lost can be utilized for current generation. We present a framework for modeling this effect in both planar layer stacks and devices with periodic nanostructuring. As a case study, we evaluate how luminescent coupling is affected by the inclusion of nanostructuring in a perovskite silicon tandem solar cell. We find that nanostructuring, while reducing the reflection loss for tandem solar cells also reduces the luminescent coupling, allowing more light to be emitted to the surroundings, when compared to planar devices. This highlights the need to include modeling of this effect into optimization schemes in order to find the trade-off between these two effects. The published version of this work is available at https://doi.org/10.1117/12.3023941., Comment: 7 pages, 3 figures
- Published
- 2024
- Full Text
- View/download PDF
37. Spiers Memorial Lecture: How to do impactful research in artificial intelligence for chemistry and materials science
- Author
-
Cheng, Austin, Ser, Cher Tian, Skreta, Marta, Guzmán-Cordero, Andrés, Thiede, Luca, Burger, Andreas, Aldossary, Abdulrahman, Leong, Shi Xuan, Pablo-García, Sergio, Strieth-Kalthoff, Felix, and Aspuru-Guzik, Alán
- Subjects
Computer Science - Machine Learning ,Condensed Matter - Materials Science ,Computer Science - Artificial Intelligence ,Physics - Chemical Physics - Abstract
Machine learning has been pervasively touching many fields of science. Chemistry and materials science are no exception. While machine learning has been making a great impact, it is still not reaching its full potential or maturity. In this perspective, we first outline current applications across a diversity of problems in chemistry. Then, we discuss how machine learning researchers view and approach problems in the field. Finally, we provide our considerations for maximizing impact when researching machine learning for chemistry.
- Published
- 2024
- Full Text
- View/download PDF
38. Towards Implementation of the Pressure-Regulated, Feedback-Modulated Model of Star Formation in Cosmological Simulations: Methods and Application to TNG
- Author
-
Hassan, Sultan, Ostriker, Eve C., Kim, Chang-Goo, Bryan, Greg L., Burger, Jan D., Fielding, Drummond B., Forbes, John C., Genel, Shy, Hernquist, Lars, Jeffreson, Sarah M. R., Motwani, Bhawna, Smith, Matthew C., Somerville, Rachel S., Steinwandel, Ulrich P., and Teyssier, Romain
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Traditional star formation subgrid models implemented in cosmological galaxy formation simulations, such as that of Springel & Hernquist (2003, hereafter SH03), employ adjustable parameters to satisfy constraints measured in the local Universe. In recent years, however, theory and spatially-resolved simulations of the turbulent, multiphase, star-forming ISM have begun to produce new first-principles models, which when fully developed can replace traditional subgrid prescriptions. This approach has advantages of being physically motivated and predictive rather than empirically tuned, and allowing for varying environmental conditions rather than being tied to local Universe conditions. As a prototype of this new approach, by combining calibrations from the TIGRESS numerical framework with the Pressure-Regulated Feedback-Modulated (PRFM) theory, simple formulae can be obtained for both the gas depletion time and an effective equation of state. Considering galaxies in TNG50, we compare the "native" simulation outputs with post-processed predictions from PRFM. At TNG50 resolution, the total midplane pressure is nearly equal to the total ISM weight, indicating that galaxies in TNG50 are close to satisfying vertical equilibrium. The measured gas scale height is also close to theoretical equilibrium predictions. The slopes of the effective equations of states are similar, but with effective velocity dispersion normalization from SH03 slightly larger than that from current TIGRESS simulations. Because of this and the decrease in PRFM feedback yield at high pressure, the PRFM model predicts shorter gas depletion times than the SH03 model at high densities and redshift. Our results represent a first step towards implementing new, numerically calibrated subgrid algorithms in cosmological galaxy formation simulations., Comment: 33 pages, 12 figures, Accepted for publication in ApJ. This is a Learning the Universe Publication. All codes and data used to produce this work can be found at the following $\href{https://github.com/sultan-hassan/tng50-post-processing-prfm}{GitHub \,Link.}$
- Published
- 2024
39. A framework to compute resonances arising from multiple scattering
- Author
-
Fischbach, Jan David, Betz, Fridtjof, Asadova, Nigar, Tassan, Pietro, Urbonas, Darius, Stöferle, Thilo, Mahrt, Rainer F., Burger, Sven, Rockstuhl, Carsten, Binkowski, Felix, and Sturges, Thomas Jebb
- Subjects
Physics - Computational Physics ,Physics - Optics - Abstract
Numerous natural and technological phenomena are governed by resonances. In nanophotonics, resonances often result from the interaction of several optical elements. Controlling these resonances is an excellent opportunity to provide light with properties on demand for applications ranging from sensing to quantum technologies. The inverse design of large, distributed resonators, however, is typically challenged by high computational costs when discretizing the entire system in space. Here, this limitation is overcome by harnessing prior knowledge about the individual scatterers that form the resonator and their interaction. In particular, a transition matrix multi-scattering framework is coupled with the state-of-the-art adaptive Antoulas-Anderson (AAA) algorithm to identify complex poles of the optical response function. A sample refinement strategy suitable for accurately locating a large number of poles is introduced. We tie the AAA algorithm into an automatic differentiation framework to efficiently differentiate multi-scattering resonance calculations. The resulting resonance solver allows for efficient gradient-based optimization, demonstrated here by the inverse design of an integrated exciton-polariton cavity. This contribution serves as an important step towards efficient resonance calculations in a variety of multi-scattering scenarios, such as inclusions in stratified media, periodic lattices, and scatterers with arbitrary shapes.
- Published
- 2024
- Full Text
- View/download PDF
40. Design of a release-free piezo-optomechanical quantum transducer
- Author
-
Burger, Paul, Frey, Joey, Kolvik, Johan, Hambraeus, David, and Van Laer, Raphaël
- Subjects
Quantum Physics ,Physics - Optics - Abstract
Quantum transduction between microwave and optical photons could combine the long-range connectivity provided by optical photons with the deterministic quantum operations of superconducting microwave qubits. A promising approach to quantum microwave-optics transduction uses an intermediary mechanical mode along with piezo-optomechanical interactions. So far, such transducers have been released from their underlying substrate to confine mechanical fields -- preventing proper thermal anchoring and creating a noise-efficiency trade-off resulting from optical absorption. Here, we introduce a release-free, i.e. non-suspended, piezo-optomechanical transducer intended to circumvent this noise-efficiency trade-off. We propose and design a silicon-on-sapphire (SOS) release-free transducer with appealing piezo- and optomechanical performance. Our proposal integrates release-free lithium niobate electromechanical crystals with silicon optomechanical crystals on a sapphire substrate meant to improve thermal anchoring along with microwave and mechanical coherence. It leverages high-wavevector mechanical modes firmly guided on the chip surface. Beyond quantum science and engineering, the proposed platform and design principles are attractive for low-power acousto-optic systems in integrated photonics., Comment: 17 pages, 16 figures
- Published
- 2024
41. Quantum error correction below the surface code threshold
- Author
-
Acharya, Rajeev, Aghababaie-Beni, Laleh, Aleiner, Igor, Andersen, Trond I., Ansmann, Markus, Arute, Frank, Arya, Kunal, Asfaw, Abraham, Astrakhantsev, Nikita, Atalaya, Juan, Babbush, Ryan, Bacon, Dave, Ballard, Brian, Bardin, Joseph C., Bausch, Johannes, Bengtsson, Andreas, Bilmes, Alexander, Blackwell, Sam, Boixo, Sergio, Bortoli, Gina, Bourassa, Alexandre, Bovaird, Jenna, Brill, Leon, Broughton, Michael, Browne, David A., Buchea, Brett, Buckley, Bob B., Buell, David A., Burger, Tim, Burkett, Brian, Bushnell, Nicholas, Cabrera, Anthony, Campero, Juan, Chang, Hung-Shen, Chen, Yu, Chen, Zijun, Chiaro, Ben, Chik, Desmond, Chou, Charina, Claes, Jahan, Cleland, Agnetta Y., Cogan, Josh, Collins, Roberto, Conner, Paul, Courtney, William, Crook, Alexander L., Curtin, Ben, Das, Sayan, Davies, Alex, De Lorenzo, Laura, Debroy, Dripto M., Demura, Sean, Devoret, Michel, Di Paolo, Agustin, Donohoe, Paul, Drozdov, Ilya, Dunsworth, Andrew, Earle, Clint, Edlich, Thomas, Eickbusch, Alec, Elbag, Aviv Moshe, Elzouka, Mahmoud, Erickson, Catherine, Faoro, Lara, Farhi, Edward, Ferreira, Vinicius S., Burgos, Leslie Flores, Forati, Ebrahim, Fowler, Austin G., Foxen, Brooks, Ganjam, Suhas, Garcia, Gonzalo, Gasca, Robert, Genois, Élie, Giang, William, Gidney, Craig, Gilboa, Dar, Gosula, Raja, Dau, Alejandro Grajales, Graumann, Dietrich, Greene, Alex, Gross, Jonathan A., Habegger, Steve, Hall, John, Hamilton, Michael C., Hansen, Monica, Harrigan, Matthew P., Harrington, Sean D., Heras, Francisco J. H., Heslin, Stephen, Heu, Paula, Higgott, Oscar, Hill, Gordon, Hilton, Jeremy, Holland, George, Hong, Sabrina, Huang, Hsin-Yuan, Huff, Ashley, Huggins, William J., Ioffe, Lev B., Isakov, Sergei V., Iveland, Justin, Jeffrey, Evan, Jiang, Zhang, Jones, Cody, Jordan, Stephen, Joshi, Chaitali, Juhas, Pavol, Kafri, Dvir, Kang, Hui, Karamlou, Amir H., Kechedzhi, Kostyantyn, Kelly, Julian, Khaire, Trupti, Khattar, Tanuj, Khezri, Mostafa, Kim, Seon, Klimov, Paul V., Klots, Andrey R., Kobrin, Bryce, Kohli, Pushmeet, Korotkov, Alexander N., Kostritsa, Fedor, Kothari, Robin, Kozlovskii, Borislav, Kreikebaum, John Mark, Kurilovich, Vladislav D., Lacroix, Nathan, Landhuis, David, Lange-Dei, Tiano, Langley, Brandon W., Laptev, Pavel, Lau, Kim-Ming, Guevel, Loïck Le, Ledford, Justin, Lee, Kenny, Lensky, Yuri D., Leon, Shannon, Lester, Brian J., Li, Wing Yan, Li, Yin, Lill, Alexander T., Liu, Wayne, Livingston, William P., Locharla, Aditya, Lucero, Erik, Lundahl, Daniel, Lunt, Aaron, Madhuk, Sid, Malone, Fionn D., Maloney, Ashley, Mandrá, Salvatore, Martin, Leigh S., Martin, Steven, Martin, Orion, Maxfield, Cameron, McClean, Jarrod R., McEwen, Matt, Meeks, Seneca, Megrant, Anthony, Mi, Xiao, Miao, Kevin C., Mieszala, Amanda, Molavi, Reza, Molina, Sebastian, Montazeri, Shirin, Morvan, Alexis, Movassagh, Ramis, Mruczkiewicz, Wojciech, Naaman, Ofer, Neeley, Matthew, Neill, Charles, Nersisyan, Ani, Neven, Hartmut, Newman, Michael, Ng, Jiun How, Nguyen, Anthony, Nguyen, Murray, Ni, Chia-Hung, O'Brien, Thomas E., Oliver, William D., Opremcak, Alex, Ottosson, Kristoffer, Petukhov, Andre, Pizzuto, Alex, Platt, John, Potter, Rebecca, Pritchard, Orion, Pryadko, Leonid P., Quintana, Chris, Ramachandran, Ganesh, Reagor, Matthew J., Rhodes, David M., Roberts, Gabrielle, Rosenberg, Eliott, Rosenfeld, Emma, Roushan, Pedram, Rubin, Nicholas C., Saei, Negar, Sank, Daniel, Sankaragomathi, Kannan, Satzinger, Kevin J., Schurkus, Henry F., Schuster, Christopher, Senior, Andrew W., Shearn, Michael J., Shorter, Aaron, Shutty, Noah, Shvarts, Vladimir, Singh, Shraddha, Sivak, Volodymyr, Skruzny, Jindra, Small, Spencer, Smelyanskiy, Vadim, Smith, W. Clarke, Somma, Rolando D., Springer, Sofia, Sterling, George, Strain, Doug, Suchard, Jordan, Szasz, Aaron, Sztein, Alex, Thor, Douglas, Torres, Alfredo, Torunbalci, M. Mert, Vaishnav, Abeer, Vargas, Justin, Vdovichev, Sergey, Vidal, Guifre, Villalonga, Benjamin, Heidweiller, Catherine Vollgraff, Waltman, Steven, Wang, Shannon X., Ware, Brayden, Weber, Kate, White, Theodore, Wong, Kristi, Woo, Bryan W. K., Xing, Cheng, Yao, Z. Jamie, Yeh, Ping, Ying, Bicheng, Yoo, Juhwan, Yosri, Noureldin, Young, Grayson, Zalcman, Adam, Zhang, Yaxing, Zhu, Ningfeng, and Zobrist, Nicholas
- Subjects
Quantum Physics - Abstract
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit, where the logical error rate is suppressed exponentially as more qubits are added. However, this exponential suppression only occurs if the physical error rate is below a critical threshold. In this work, we present two surface code memories operating below this threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder. The logical error rate of our larger quantum memory is suppressed by a factor of $\Lambda$ = 2.14 $\pm$ 0.02 when increasing the code distance by two, culminating in a 101-qubit distance-7 code with 0.143% $\pm$ 0.003% error per cycle of error correction. This logical memory is also beyond break-even, exceeding its best physical qubit's lifetime by a factor of 2.4 $\pm$ 0.3. We maintain below-threshold performance when decoding in real time, achieving an average decoder latency of 63 $\mu$s at distance-5 up to a million cycles, with a cycle time of 1.1 $\mu$s. To probe the limits of our error-correction performance, we run repetition codes up to distance-29 and find that logical performance is limited by rare correlated error events occurring approximately once every hour, or 3 $\times$ 10$^9$ cycles. Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms., Comment: 10 pages, 4 figures, Supplementary Information
- Published
- 2024
42. Enhanced Parking Perception by Multi-Task Fisheye Cross-view Transformers
- Author
-
Musabini, Antonyo, Novikov, Ivan, Soula, Sana, Leonet, Christel, Wang, Lihao, Benmokhtar, Rachid, Burger, Fabian, Boulay, Thomas, and Perrotton, Xavier
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
Current parking area perception algorithms primarily focus on detecting vacant slots within a limited range, relying on error-prone homographic projection for both labeling and inference. However, recent advancements in Advanced Driver Assistance System (ADAS) require interaction with end-users through comprehensive and intelligent Human-Machine Interfaces (HMIs). These interfaces should present a complete perception of the parking area going from distinguishing vacant slots' entry lines to the orientation of other parked vehicles. This paper introduces Multi-Task Fisheye Cross View Transformers (MT F-CVT), which leverages features from a four-camera fisheye Surround-view Camera System (SVCS) with multihead attentions to create a detailed Bird-Eye View (BEV) grid feature map. Features are processed by both a segmentation decoder and a Polygon-Yolo based object detection decoder for parking slots and vehicles. Trained on data labeled using LiDAR, MT F-CVT positions objects within a 25m x 25m real open-road scenes with an average error of only 20 cm. Our larger model achieves an F-1 score of 0.89. Moreover the smaller model operates at 16 fps on an Nvidia Jetson Orin embedded board, with similar detection results to the larger one. MT F-CVT demonstrates robust generalization capability across different vehicles and camera rig configurations. A demo video from an unseen vehicle and camera rig is available at: https://streamable.com/jjw54x., Comment: This paper is a preprint of a paper submitted to the 26th Irish Machine Vision and Image Processing Conference (IMVIP 2024). If accepted, the copy of record will be available at IET Digital Library
- Published
- 2024
43. T-matrix representation of optical scattering response: Suggestion for a data format
- Author
-
Asadova, Nigar, Achouri, Karim, Arjas, Kristian, Auguié, Baptiste, Aydin, Roland, Baron, Alexandre, Beutel, Dominik, Bodermann, Bernd, Boussaoud, Kaoutar, Burger, Sven, Choi, Minseok, Czajkowski, Krzysztof M., Evlyukhin, Andrey B., Fazel-Najafabadi, Atefeh, Fernandez-Corbaton, Ivan, Garg, Puneet, Globosits, David, Hohenester, Ulrich, Kim, Hongyoon, Kim, Seokwoo, Lalanne, Philippe, Ru, Eric C. Le, Meyer, Jörg, Mun, Jungho, Pattelli, Lorenzo, Pflug, Lukas, Rockstuhl, Carsten, Rho, Junsuk, Rotter, Stefan, Stout, Brian, Törmä, Päivi, Trigo, Jorge Olmos, Tristram, Frank, Tsitsas, Nikolaos L., Vallée, Renaud, Vynck, Kevin, Weiss, Thomas, Wiecha, Peter, Wriedt, Thomas, Yannopapas, Vassilios, Yurkin, Maxim A., and Zouros, Grigorios P.
- Subjects
Physics - Optics ,Physics - Computational Physics - Abstract
The transition matrix, frequently abbreviated as T-matrix, contains the complete information in a linear approximation of how a spatially localized object scatters an incident field. The T-matrix is used to study the scattering response of an isolated object and describes the optical response of complex photonic materials made from ensembles of individual objects. T-matrices of certain common structures, potentially, have been repeatedly calculated all over the world again and again. This is not necessary and constitutes a major challenge for various reasons. First, the resources spent on their computation represent an unsustainable financial and ecological burden. Second, with the onset of machine learning, data is the gold of our era, and it should be freely available to everybody to address novel scientific challenges. Finally, the possibility of reproducing simulations could tremendously improve if the considered T-matrices could be shared. To address these challenges, we found it important to agree on a common data format for T-matrices and to enable their collection from different sources and distribution. This document aims to develop the specifications for storing T-matrices and associated metadata. The specifications should allow maximum freedom to accommodate as many use cases as possible without introducing any ambiguity in the stored data. The common format will assist in setting up a public database of T-matrices., Comment: Submitted to the Journal of Quantitative Spectroscopy and Radiative Transfer
- Published
- 2024
- Full Text
- View/download PDF
44. Tuning the mechanical properties of organophilic clay dispersions: particle composition and preshear history effects
- Author
-
Burger, Nikolaos A., Loppinet, Benoit, Clarke, Andrew, and Petekidis, George
- Subjects
Condensed Matter - Soft Condensed Matter - Abstract
Clay minerals are abundant natural materials used widely in coatings, construction materials, ceramics, as well as being a component of drilling fluids. Here, we present the effect of steady and oscillatory preshear on organophilic modified clay gels in synthetic oil. Both platelet and needle-like particles are used as viscosifiers in drilling fluid formulations. For both particles the plateau modulus exhibits a similar concentration dependence, G_P ~ c^3.9, whereas the yield strain is {\gamma}_y ~ c^(-1) for the platelets and {\gamma}_y ~ c^-1.7 for the needles. Mixtures of the two follow an intermediate behavior: at low concentrations their elasticity and yield strain follows that of needle particles while at higher concentrations it exhibits a weaker power law dependence. Furthermore, upon varying the preshear history, the gel viscoelastic properties can be significantly tuned. At lower (higher) clay concentrations, preshear at specific oscillatory strain amplitudes or steady shear rates, may induce a hardening (softening) of the dispersions and, at all concentrations, a lowering of the shear strain. Hence, in needle dispersions preshear resulted in changes in the volume fraction dependence of the elastic modulus from G_P ~ c^3.9 to G_P ~ c^2.5 and of the yield strain from {\gamma}_y ~ c^-1.7 to {\gamma}_y ~ c^-1. However, small angle X-ray scattering showed not much structural changes, within the q-range covered. Our findings indicate ways to design colloidal organoclay dispersions with a mechanical response that can be tuned at will.
- Published
- 2024
- Full Text
- View/download PDF
45. New versus past silica crush curve experiments: application to Dimorphos benchmarking impact simulations
- Author
-
Malamud, Uri, Schafer, Christoph M., Sebastian, Irina Luciana San, Timpe, Maximilian, Essink, Karl Alexander, Kreuzig, Christopher, Meier, Gerwin, Blum, Jürgen, Perets, Hagai B., and Burger, Christoph
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Physics - Geophysics - Abstract
Crush curves are of fundamental importance to numerical modeling of small and porous astrophysical bodies. The empirical literature often measures them for silica grains, and different studies have used various methods, sizes, textures, and pressure conditions. Here we review past studies and supplement further experiments in order to develop a full and overarching understanding of the silica crush curve behavior. We suggest a new power-law function that can be used in impact simulations of analog materials similar to micro-granular silica. We perform a benchmarking study to compare this new crush curve to the parametric quadratic crush curve often used in other studies, based on the study case of the DART impact onto the asteroid Dimorphos. We find that the typical quadratic crush curve parameters do not closely follow the silica crushing experiments, and as a consequence they under (over) estimate compression close (far) from the impact site. The new crush curve presented here, applicable to pressures between a few hundred Pa and up to 1.1 GPa, might therefore be more precise. Additionally, it is not calibrated by case-specific parameters, and can be used universally for comet- or asteroid-like bodies, given an assumed composition similar to micro-granular silica., Comment: Accepted to ApJ
- Published
- 2024
46. Quantifying Quality: The Impact of Measures of School Quality on Children's Academic Achievement across Diverse Societies
- Author
-
Bruce S. Rawlings, Helen Elizabeth Davis, Adote Anum, Oskar Burger, Lydia Chen, Juliet Carolina Castro Morales, Natalia Dutra, Ardain Dzabatou, Vivian Dzokoto, Alejandro Erut, Frankie T. K. Fong, Sabrina Ghelardi, Micah Goldwater, Gordon Ingram, Emily Messer, Jessica Kingsford, Sheina Lew-Levy, Kimberley Mendez, Morgan Newhouse, Mark Nielsen, Gairan Pamei, Sarah Pope-Caldwell, Karlos Ramos, Luis Emilio Echeverria Rojas, Renan A. C. dos Santos, Lara G. S. Silveira, Julia Watzek, Ciara Wirth, and Cristine H. Legare
- Abstract
Recent decades have seen a rapid acceleration in global participation in formal education, due to worldwide initiatives aimed to provide school access to all children. Research in high income countries has shown that school quality indicators have a significant, positive impact on numeracy and literacy--skills required to participate in the increasingly globalized economy. Schools vary enormously in kind, resources, and teacher training around the world, however, and the validity of using diverse school quality measures in populations with diverse educational profiles remains unclear. First, we assessed whether children's numeracy and literacy performance across populations improves with age, as evidence of general school-related learning effects. Next, we examined whether several school quality measures related to classroom experience and composition, and to educational resources, were correlated with one another. Finally, we examined whether they were associated with children's (4-12-year-olds, N = 889) numeracy and literacy performance in 10 culturally and geographically diverse populations which vary in historical engagement with formal schooling. Across populations, age was a strong positive predictor of academic achievement. Measures related to classroom experience and composition were correlated with one another, as were measures of access to educational resources and classroom experience and composition. The number of teachers per class and access to writing materials were key predictors of numeracy and literacy, while the number of students per classroom, often linked to academic achievement, was not. We discuss these results in the context of maximising children's learning environments and highlight study limitations to motivate future research.
- Published
- 2024
- Full Text
- View/download PDF
47. Constructing the Field or Cementing It?
- Author
-
Burger, Lisa, primary and Burger, Tim, additional
- Published
- 2024
- Full Text
- View/download PDF
48. Beyond the Sea: Echoes of Jules Verne in The Life Aquatic with Steve Zissou
- Author
-
Burger, Alissa
- Published
- 2018
49. Poe: Stories and Poems by Gareth Hinds (review)
- Author
-
Burger, Alissa
- Published
- 2018
50. Very-high-energy $\gamma$-ray emission from young massive star clusters in the Large Magellanic Cloud
- Author
-
Aharonian, F., Benkhali, F. Ait, Aschersleben, J., Ashkar, H., Backes, M., Martins, V. Barbosa, Batzofin, R., Becherini, Y., Berge, D., Bernlöhr, K., Böttcher, M., Bolmont, J., de Lavergne, M. de Bony, Borowska, J., Brose, R., Brown, A., Brun, F., Bruno, B., Burger-Scheidlin, C., Casanova, S., Celic, J., Cerruti, M., Chand, T., Chandra, S., Chen, A., Chibueze, J., Chibueze, O., Cotter, G., Cristofari, P., Devin, J., Djannati-Ataï, A., Djuvsland, J., Dmytriiev, A., Egberts, K., Einecke, S., Feijen, K., Filipovic, M., Fontaine, G., Funk, S., Gabici, S., Gallant, Y. A., Glicenstein, J. F., Glombitza, J., Grolleron, G., Haerer, L., Heß, B., Hinton, J. A., Hofmann, W., Holch, T. L., Horns, D., Huang, Zhiqiu, Jamrozy, M., Jankowsky, F., Jung-Richardt, I., Kasai, E., Katarzyński, K., Khatoon, R., Khélifi, B., Kluźniak, W., Komin, Nu., Kosack, K., Kostunin, D., Kundu, A., Lang, R. G., Stum, S. Le, Lemière, A., Lemoine-Goumard, M., Lenain, J. -P., Leuschner, F., Mackey, J., Marandon, V., Martí-Devesa, G., Marx, R., Mehta, A., Mitchell, A., Moderski, R., Moghadam, M. O., Mohrmann, L., Montanari, A., Moulin, E., de Naurois, M., Niemiec, J., Ohm, S., Olivera-Nieto, L., Wilhelmi, E. de Ona, Ostrowski, M., Panny, S., Pensec, U., Peron, G., Pühlhofer, G., Quirrenbach, A., Ravikularaman, S., Regeard, M., Reimer, A., Reimer, O., Ren, H., Renaud, M., Reville, B., Rieger, F., Rowell, G., Rudak, B., Ruiz-Velasco, E., Sabri, K., Sahakian, V., Salzmann, H., Santangelo, A., Sasaki, M., Schäfer, J., Schüssler, F., Schutte, H. M., Sol, H., Spencer, S., Stawarz, Ł., Steinmassl, S., Steppa, C., Streil, K., Sushch, I., Taylor, A. M., Terrier, R., Tsirou, M., Tsuji, N., van Eldik, C., Vecchi, M., Venter, C., Vink, J., Wagner, S. J., White, R., Wierzcholska, A., Zacharias, M., Zdziarski, A. A., Zech, A., and Żywucka, N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The Tarantula Nebula in the Large Magellanic Cloud is known for its high star formation activity. At its center lies the young massive star cluster R136, providing a significant amount of the energy that makes the nebula shine so brightly at many wavelengths. Recently, young massive star clusters have been suggested to also efficiently produce high-energy cosmic rays, potentially beyond PeV energies. Here, we report the detection of very-high-energy $\gamma$-ray emission from the direction of R136 with the High Energy Stereoscopic System, achieved through a multicomponent, likelihood-based modeling of the data. This supports the hypothesis that R136 is indeed a very powerful cosmic-ray accelerator. Moreover, from the same analysis, we provide an updated measurement of the $\gamma$-ray emission from 30 Dor C, the only superbubble detected at TeV energies presently. The $\gamma$-ray luminosity above $0.5\,\mathrm{TeV}$ of both sources is $(2-3)\times 10^{35}\,\mathrm{erg}\,\mathrm{s}^{-1}$. This exceeds by more than a factor of 2 the luminosity of HESS J1646$-$458, which is associated with the most massive young star cluster in the Milky Way, Westerlund 1. Furthermore, the $\gamma$-ray emission from each source is extended with a significance of $>3\sigma$ and a Gaussian width of about $30\,\mathrm{pc}$. For 30 Dor C, a connection between the $\gamma$-ray emission and the nonthermal X-ray emission appears likely. Different interpretations of the $\gamma$-ray signal from R136 are discussed., Comment: 10+11 pages, 4+6 figures. Corresponding authors: L. Mohrmann, N. Komin
- Published
- 2024
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.