61 results on '"Kenji Iohara"'
Search Results
2. Equivalence of a tangle category and a category of infinite dimensional 𝑈_{𝑞}(𝔰𝔩₂)-modules
- Author
-
Ruibin Zhang, Gustav I. Lehrer, and Kenji Iohara
- Subjects
Pure mathematics ,Mathematics (miscellaneous) ,Verma module ,010102 general mathematics ,02 engineering and technology ,0101 mathematics ,021001 nanoscience & nanotechnology ,0210 nano-technology ,01 natural sciences ,Equivalence (measure theory) ,Tangle ,Mathematics - Abstract
It is very well known that if V V is the simple 2 2 -dimensional representation of U q ( s l 2 ) \mathrm {U}_q(\mathfrak {sl}_2) , the category of representations V ⊗ r V^{\otimes r} , r = 0 , 1 , 2 , … r=0,1,2,\dots , is equivalent to the Temperley-Lieb category T L ( q ) \mathrm {TL}(q) . Such categorical equivalences between tangle categories and categories of representations are rare. In this work we give a family of new equivalences by extending the above equivalence to one between the category of representations M ⊗ V ⊗ r M\otimes V^{\otimes r} , where M M is a projective Verma module of U q ( s l 2 ) \mathrm {U}_q(\mathfrak {sl}_2) and the type B B Temperley-Lieb category T L B ( q , Q ) \mathbb {TLB}(q,Q) , realised as a subquotient of the tangle category of Freyd, Yetter, Reshetikhin, Turaev and others.
- Published
- 2021
- Full Text
- View/download PDF
3. Maurice Janet’s algorithms on systems of linear partial differential equations
- Author
-
Philippe Malbos, Kenji Iohara, Algèbre, géométrie, logique (AGL), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Monomial ,Partial differential equation ,010102 general mathematics ,Multiplicative function ,06 humanities and the arts ,Formal methods ,01 natural sciences ,Algebra ,Mathematics (miscellaneous) ,060105 history of science, technology & medicine ,History and Philosophy of Science ,[MATH.MATH-HO]Mathematics [math]/History and Overview [math.HO] ,Compatibility (mechanics) ,Partition (number theory) ,0601 history and archaeology ,Uniqueness ,0101 mathematics ,Algebraic number ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
This article describes the emergence of formal methods in theory of partial differential equations (PDE) in the French school of mathematics through Janet’s work in the period 1913–1930. In his thesis and in a series of articles published during this period, Janet introduced an original formal approach to deal with the solvability of the problem of initial conditions for finite linear PDE systems. His constructions implicitly used an interpretation of a monomial PDE system as a generating family of a multiplicative set of monomials. He introduced an algorithmic method on multiplicative sets to compute compatibility conditions, and to study the problem of the existence and the uniqueness of a solution to a linear PDE system with given initial conditions. The compatibility conditions are formulated using a refinement of the division operation on monomials defined with respect to a partition of the set of variables into multiplicative and non-multiplicative variables. Janet was a pioneer in the development of these algorithmic methods, and the completion procedure that he introduced on polynomials was the first one in a long and rich series of works on completion methods which appeared independently throughout the twentieth-century in various algebraic contexts.
- Published
- 2021
- Full Text
- View/download PDF
4. Maurice Janet's algorithms on systems of linear partial differential equations
- Author
-
Kenji Iohara, Philippe Malbos, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Algèbre, géométrie, logique (AGL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
- Subjects
formal methods ,History and Overview (math.HO) ,Mathematics - History and Overview ,[MATH.MATH-HO]Mathematics [math]/History and Overview [math.HO] ,FOS: Mathematics ,01-08, 01A60, 13P10, 12H05, 35A25 ,Commutative Algebra (math.AC) ,Mathematics - Commutative Algebra ,Janet's bases ,Linear PDE systems - Abstract
This article presents the emergence of formal methods in theory of partial differential equations (PDE) in the french school of mathematics through Janet's work in the period 1913-1930. In his thesis and in a series of articles published during this period, M. Janet introduced an original formal approach to deal with the solvability of the problem of initial conditions for finite linear PDE systems. His constructions implicitly used an interpretation of a monomial PDE system as a generating family of a multiplicative set of monomials. He introduced an algorithmic method on multiplicative sets to compute compatibility conditions, and to study the problem of the existence and the unicity of a solution to a linear PDE system with given initial conditions. The compatibility conditions are formulated using a refinement of the division operation on monomials defined with respect to a partition of the set of variables into multiplicative and non-multiplicative variables. M. Janet was a pioneer in the development of these algorithmic methods, and the completion procedure that he introduced on polynomials was the first one in a long and rich series of works on completion methods which appeared independently throughout the 20th century in various algebraic contexts., arXiv admin note: text overlap with arXiv:1801.00053
- Published
- 2021
- Full Text
- View/download PDF
5. On Lie algebras of generalized Jacobi matrices
- Author
-
Kenji Iohara and Alice Fialowski
- Subjects
Physics ,Ring (mathematics) ,Pure mathematics ,Homology (mathematics) ,Lie algebra ,FOS: Mathematics ,General Earth and Planetary Sciences ,Soliton ,Representation Theory (math.RT) ,Mathematics::Representation Theory ,Mathematics::Symplectic Geometry ,Mathematics - Representation Theory ,General Environmental Science ,Symplectic geometry - Abstract
In this lecutre note, we consider infinite dimensional Lie algebras of generalized Jacobi matrices $\mathfrak{g}J(k)$ and $\mathfrak{gl}_\infty(k)$, which are important in soliton theory, and their orthogonal and symplectic subalgebras. In particular, we construct the homology ring of the Lie algebra $\mathfrak{g}J(k)$ and of the orthogonal and symplectic subalgebras., To appear in Banach Center Publications
- Published
- 2020
6. From analytical mechanical problems to rewriting theory through M. Janet's work
- Author
-
Philippe Malbos, Kenji Iohara, Algèbre, géométrie, logique (AGL), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Polynomial ring ,[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC] ,010102 general mathematics ,Elimination theory ,01-08, 13P10, 12H05, 35A25, 58A15, 68Q42 ,010103 numerical & computational mathematics ,01 natural sciences ,Algebra ,Algebraic equation ,symbols.namesake ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,symbols ,Homological algebra ,Ideal (order theory) ,Rewriting ,0101 mathematics ,Computational problem ,Mathematics ,Hilbert–Poincaré series - Abstract
This chapter is devoted to a survey of the historical background of Grobner bases for D-modules and linear rewriting theory largely developed in algebra throughout the twentieth century and to present deep relationships between them. Completion methods are the main streams for these computational theories. In the theory of Grobner bases, they were motivated by algorithmic problems in elimination theory such as computations in quotient polynomial rings modulo an ideal, manipulating algebraic equations, and computing Hilbert series. In rewriting theory, they were motivated by computation of normal forms and linear bases for algebras and computational problems in homological algebra.
- Published
- 2020
- Full Text
- View/download PDF
7. Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers
- Author
-
Kenji Iohara
- Published
- 2020
- Full Text
- View/download PDF
8. Introduction to Representations of Quivers
- Author
-
Kenji Iohara, Algèbre, géométrie, logique (AGL), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010102 general mathematics ,0103 physical sciences ,010307 mathematical physics ,[MATH]Mathematics [math] ,0101 mathematics ,01 natural sciences ,ComputingMilieux_MISCELLANEOUS - Abstract
The main purpose of this lecture note is to provide a quick introduction to quivers and their representations. In particular, as there already exists several introductory and complete texts on quivers, the author tries motivating the reader to develop the theory by showing several concrete examples.
- Published
- 2020
- Full Text
- View/download PDF
9. Invariants of the Weyl Group of Type $A_{2l}^{(2)}$
- Author
-
Kenji Iohara, Yoshihisa Saito, Algèbre, géométrie, logique (AGL), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and ANR-15-CE40-0012,GéoLie,Méthodes géométriques en théorie de Lie(2015)
- Subjects
Condensed Matter::Quantum Gases ,Pure mathematics ,Weyl group ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,General Mathematics ,High Energy Physics::Lattice ,010102 general mathematics ,Type (model theory) ,01 natural sciences ,symbols.namesake ,FOS: Mathematics ,symbols ,Representation Theory (math.RT) ,0101 mathematics ,[MATH]Mathematics [math] ,Mathematics - Representation Theory ,Mathematics - Abstract
In this note, we show the polynomiality of the ring of invariants with respect to the Weyl group of type $A_{2l}^{(2)}$., 23 pages, some typos corrected and details added. Accepted version for publication
- Published
- 2019
- Full Text
- View/download PDF
10. Temperley-Lieb Algebras At Roots of Unity, A Fusion category and the Jones Quotient
- Author
-
Kenji Iohara, Gus Lehrer, Ruibin Zhang, Algèbre, géométrie, logique (AGL), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), School of Mathematics and statistics [Sydney], and The University of Sydney
- Subjects
Endomorphism ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Symmetric bilinear form ,Root of unity ,General Mathematics ,010102 general mathematics ,Dimension (graph theory) ,Order (ring theory) ,01 natural sciences ,Combinatorics ,Tensor product ,Product (mathematics) ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,0101 mathematics ,Quotient ,MSC2010: 81R15, 46L37, 16W22 ,Mathematics - Abstract
When the parameter $q$ is a root of unity, the Temperley-Lieb algebra $\TL_n(q)$ is non-semisimple for almost all $n$. In this work, using cellular methods, we give explicit generating functions for the dimensions of all the simple $\TL_n(q)$-modules. Jones showed that if the order $|q^2|=\ell$ there is a canonical symmetric bilinear form on $\TL_n(q)$, whose radical $R_n(q)$ is generated by a certain idempotent $E_\ell\in\TL_{\ell-1}(q)\subseteq\TL_n(q)$, which is now referred to as the Jones-Wenzl idempotent, for which an explicit formula was subsequently given by Graham and Lehrer. Although the algebras $Q_n(\ell):=\TL_n(q)/R_n(q)$, which we refer to as the Jones algebras (or quotients), are not the largest semisimple quotients of the $\TL_n(q)$, our results include dimension formulae for all the simple $Q_n(\ell)$-modules. This work could therefore be thought of as generalising that of Jones {\it et al.} on the algebras $Q_n$. We also treat a fusion category $\cC_{\rm red}$ introduced by Reshitikhin, Turaev and Andersen, whose objects are the quantum $\fsl_2$-tilting modules with non-zero quantum dimension, and which has an associative truncated tensor product (the fusion product). We show $Q_n(\ell)$ is the endomorphism algebra of a certain module in $\cC_{\rm red}$ and use this fact to recover a dimension formula for $Q_n(\ell)$. We also show how a fusion rule for $K(Q_\infty):=\bigoplus_{n\geq 1}K_0(Q_n(\ell))$ is determined from the structure of $\cC_{\rm red}$.
- Published
- 2019
- Full Text
- View/download PDF
11. Classification of Simple Cuspidal Modules over a Lattice Lie Algebra of Witt type
- Author
-
Yuly Billig, Kenji Iohara, Carleton University, Algèbre, géométrie, logique (AGL), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), ANR-15-CE40-0012,GéoLie,Méthodes géométriques en théorie de Lie(2015), and ANR-10-LABX-0070,MILYON,Community of mathematics and fundamental computer science in Lyon(2010)
- Subjects
Pure mathematics ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,General Mathematics ,010102 general mathematics ,Lattice Lie Algebra ,Lattice (group) ,AV-module ,0102 computer and information sciences ,Type (model theory) ,01 natural sciences ,010201 computation theory & mathematics ,Simple (abstract algebra) ,Lie algebra ,FOS: Mathematics ,cuspidal module ,Uniform boundedness ,0101 mathematics ,Representation Theory (math.RT) ,[MATH]Mathematics [math] ,Mathematics - Representation Theory ,Mathematics - Abstract
Let $W_��$ be the lattice Lie algebra of Witt type associated with an additive inclusion $��: \mathbb{Z}^N \hookrightarrow \mathbb{C}^2$ with $N>1$. In this article, the classification of simple $\mathbb{Z}^N$-graded $W_��$-modules, whose multiplicities are uniformly bounded, is given., 29 pages
- Published
- 2018
- Full Text
- View/download PDF
12. Homology of Lie Algebras of Orthogonal and Symplectic Generalized Jacobi Matrices
- Author
-
Kenji Iohara, Alice Fialowski, Eötvös Loránd University (ELTE), Institute of Mathematics and Informatics, University of Pécs, Université Paris Diderot - Paris 7 (UPD7), Algèbre, géométrie, logique (AGL), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
dihedral homology ,Pure mathematics ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,General Mathematics ,Unital ,Homology (mathematics) ,16. Peace & justice ,Invariant theory ,invariant theory ,Infinite dimensional Lie algebras ,MSC 17B65 ,17B55, 16E40 ,Lie algebra ,[MATH.MATH-KT]Mathematics [math]/K-Theory and Homology [math.KT] ,FOS: Mathematics ,Lie algebra homology ,Representation Theory (math.RT) ,Associative property ,Mathematics - Representation Theory ,Mathematics ,Symplectic geometry - Abstract
In this note, we compute the homology with trivial coefficients of Lie algebras of generalized Jacobi matrices of type $B, C$ and $D$ over an associative unital $k$-algebra with $k$ being a field of characteristic $0$., To appear in Atti. Acad. Naz. Lincei Rend. Lincei Mat. Appl
- Published
- 2018
- Full Text
- View/download PDF
13. SINGULAR DEGENERATIONS OF LIE SUPERGROUPS OF TYPE D(2, 1; a)
- Author
-
Kenji Iohara, Fabio Gavarini, Algèbre, géométrie, logique ( AGL ), Institut Camille Jordan [Villeurbanne] ( ICJ ), École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Centre National de la Recherche Scientifique ( CNRS ) -École Centrale de Lyon ( ECL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Centre National de la Recherche Scientifique ( CNRS ), Dipartimento di Matematica [Rome], Università degli Studi di Roma Tor Vergata [Roma], Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Algèbre, géométrie, logique (AGL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and ANR-15-CE40-0012,GéoLie,Méthodes géométriques en théorie de Lie(2015)
- Subjects
Mathematics - Differential Geometry ,contractions ,[ MATH ] Mathematics [math] ,Pure mathematics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Structure (category theory) ,Type (model theory) ,01 natural sciences ,17B20 (Primary) ,Simple (abstract algebra) ,0103 physical sciences ,FOS: Mathematics ,Lie superalgebras ,[MATH]Mathematics [math] ,0101 mathematics ,singular degenerations ,Mathematical Physics ,Mathematics ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Lie supergroups ,010102 general mathematics ,Order (ring theory) ,Sigma ,Mathematics - Rings and Algebras ,16. Peace & justice ,14A22 ,13D10 (Secondary) ,14A22, 17B20 (Primary), 13D10 (Secondary) ,[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT] ,Singular value ,Settore MAT/02 - Algebra ,Differential Geometry (math.DG) ,Rings and Algebras (math.RA) ,Affine plane (incidence geometry) ,010307 mathematical physics ,Geometry and Topology ,Settore MAT/03 - Geometria ,Analysis - Abstract
International audience; The complex Lie superalgebras g of type D(2, 1; a) are usually defined for " non-singular " values of the parameter a , for which they are simple. In this paper we introduce five suitable integral forms of g , that are well-defined at those singular values too, giving rise to " singular specializations " that are no longer simple. This extends (in five different ways) the classically known D(2, 1; a) family. Basing on this construction, we perform the parallel one for complex Lie supergroups and describe their singular specializations (or " degenerations ") at singular values of the parameter. This is done via a general construction based on suitably chosen super Harish-Chandra pairs, which suits the Lie group theoretical framework; nevertheless, it might also be realized by means of a straightforward extension of the method introduced in [FG] and [Ga1] to construct " Chevalley supergroups " , which is fit for the context of algebraic supergeometry. Although one may adopt Kac' presentation for the Lie superalgebras of type D(2, 1; a) , in order to stress the overall S 3 –symmetry of the whole situation, we shall work (like Scheunert does, for instance, see [Sc]) with a two-dimensional parameter σ = (σ 1 , σ 2 , σ 3) ranging in the complex affine plane σ 1 + σ 2 + σ 3 = 0 instead of the single parameter a ∈ C .
- Published
- 2017
- Full Text
- View/download PDF
14. Double loop algebras and elliptic root systems
- Author
-
Kenji Iohara, Hiroshi Yamada, Algèbre, géométrie, logique (AGL), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,Weyl group ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Group (mathematics) ,Applied Mathematics ,010102 general mathematics ,Extension (predicate logic) ,Space (mathematics) ,01 natural sciences ,Principal bundle ,Action (physics) ,Invariant theory ,invariant theory ,Algebra ,Elliptic curve ,symbols.namesake ,elliptic root system ,2-Toroidal Lie algebras ,0103 physical sciences ,symbols ,010307 mathematical physics ,MSC2010: 14J17, 14K25, 17B65, 22E65 ,0101 mathematics ,Mathematics - Abstract
International audience; In this note, we describe an elliptic root system and elliptic Weyl group, due to K. Saito (Publ. RIMS 21 (1985), 75--179), from view point of double loop algebra and its group. A natural action of the double loop group will be introduced on a trivial $\C^\ast$-bundle over the space of $\overline{\partial}$-connections on a $C^\infty$-trivial principal bundle over an elliptic curve that would be constructed from $2$-dimensional central extension of a double loop algebra. The invariant theory of the elliptic Weyl group will be also discussed.
- Published
- 2017
- Full Text
- View/download PDF
15. Enright functors for Kac-Moody superalgebras
- Author
-
Kenji Iohara, Yoshiyuki Koga, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Verma module ,Singular vector formula ,Kac-Moody superalgebra ,General Mathematics ,Scalar (mathematics) ,Enright functor ,01 natural sciences ,High Energy Physics::Theory ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Mathematics::Category Theory ,Mathematics::Quantum Algebra ,0103 physical sciences ,MSC 17B10, 17B67 ,Uniqueness ,0101 mathematics ,Mathematics::Representation Theory ,Mathematics ,Functor ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,010102 general mathematics ,Superalgebra ,Algebra ,Number theory ,Differential geometry ,Homomorphism ,010307 mathematical physics - Abstract
International audience; A simple generalization of the Enright functor associated with a non-isotropic simple root of Kac-Moody superalgebras is introduced. Two applications for a Kac-Moody superalgebra without isotropic simple root are given: the uniqueness (up to scalar) of homomorphisms between Verma modules and the Malikov-Feigin-Fuks type singular vector formula. The braid relations of the Enright functors are also discussed.
- Published
- 2012
- Full Text
- View/download PDF
16. Modules de plus haut poids unitarisables sur la super-algèbre de Virasoro N=2 tordue
- Author
-
Kenji Iohara
- Subjects
Combinatorics ,Algebra and Number Theory ,Modulo ,Virasoro algebra ,Geometry and Topology ,Mathematics - Abstract
Dans cet article, on classifie les modules de plus haut poids unitarisables sur la super-algebre de Virasoro N = 2 tordue.
- Published
- 2008
- Full Text
- View/download PDF
17. The Structure of pre-Verma Modules over the N = 1 Ramond Algebra
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Subjects
Algebra ,High Energy Physics::Theory ,Pure mathematics ,Verma module ,Mathematics::Quantum Algebra ,Structure (category theory) ,Virasoro algebra ,Statistical and Nonlinear Physics ,Super Virasoro algebra ,Algebra over a field ,Mathematics::Representation Theory ,Mathematical Physics ,Mathematics - Abstract
In this note, we determine the structure of the pre-Verma modules \(N(z,\frac{1}{24}z)\) over the N = 1 Ramond algebra. The results of this note together with the results obtained in Iohara and Koga [Adv Math 178:1–65, 2003] completely determine the structure of Verma modules over the N = 1 super Virasoro algebra both in Neveu Schwarz and Ramond sectors.
- Published
- 2006
- Full Text
- View/download PDF
18. Second homology of Lie superalgebras
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Subjects
Pure mathematics ,Mathematics::Quantum Algebra ,General Mathematics ,Mathematics::Rings and Algebras ,Lie superalgebra ,Homology (mathematics) ,Mathematics::Representation Theory ,Superalgebra ,Mathematics - Abstract
The second homology of Lie superalgebras over a field of characteristic 0 extended over a supercommutative superalgebra A and their twisted version are obtained. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
- Published
- 2005
- Full Text
- View/download PDF
19. Representation theory of N=2 super Virasoro algebra: twisted sector
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Subjects
Pure mathematics ,Verma module ,High Energy Physics::Phenomenology ,Structure (category theory) ,Verma modules ,Super Virasoro algebra ,Generalized Verma module ,Representation theory ,Fock space ,Algebra ,Twisted sector ,High Energy Physics::Theory ,Mathematics::Quantum Algebra ,Jantzen filtration ,Virasoro algebra ,Mathematics::Representation Theory ,N=2 super Virasoro algebras ,Fock modules ,Analysis ,Mathematics - Abstract
In this article, we study the structure of Verma modules and Fock modules over the twisted sector of the N =2 super Virasoro algebras.
- Published
- 2004
- Full Text
- View/download PDF
20. Symmetries, Integrable Systems and Representations
- Author
-
Kenji Iohara, Sophie Morier-Genoud, Bertrand Rémy, Kenji Iohara, Sophie Morier-Genoud, and Bertrand Rémy
- Subjects
- Representations of algebras, Physics, Mathematics, Symmetry (Mathematics)
- Abstract
This volume is the result of two international workshops; Infinite Analysis 11 – Frontier of Integrability – held at University of Tokyo, Japan in July 25th to 29th, 2011, and Symmetries, Integrable Systems and Representations held at Université Claude Bernard Lyon 1, France in December 13th to 16th, 2011.Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the reader will find some recent developments in the field of mathematical physics and their interactions with several other domains.
- Published
- 2013
21. Representation theory of Neveu-Schwarz and Ramond algebras II: Fock modules
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Subjects
Pure mathematics ,Algebra and Number Theory ,Virasoro algebra ,Geometry and Topology ,Algebra over a field ,Representation theory ,Mathematics ,Fock space - Abstract
En generalisant la filtration de Jantzen, a partir des idees de B. Feigin et D. Fuchs dans Representations of the Virasoro algebra paru aux Adv. Stud. Contemp. Math., nous determinons completement la structure des modules de Fock pour les super-algebres de Virasoro N = 1. Comme application, nous demontrons l'existence de complexes d'un type de Felder pour les modeles super-minimaux N = 1 et leur descendants. Cet article est une version detaillee de l'article de Resolution de type Bechi-Rouet-Stora-Tyutin pour les super-algebres de Virasoro paru aux CRAS en 2000.
- Published
- 2003
- Full Text
- View/download PDF
22. Wakimoto modules for the affine Lie superalgebras A(m−1, n−1)(1) and D(2, 1, a)(1)
- Author
-
Yoshiyuki Koga and Kenji Iohara
- Subjects
Algebra ,Critical level ,General Mathematics ,Affine transformation ,Construct (python library) ,Type (model theory) ,Mathematics - Abstract
In this paper, we construct Wakimoto modules for basic affine Lie superalgebras of type A(m−1, n−1)(1) and D(2, 1, a)(1). As an application, we compute the characters of irreducible highest weight modules at the critical level.
- Published
- 2002
- Full Text
- View/download PDF
23. Singular Vectors of the N = 1 Superconformal Algebra
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Subjects
Filtered algebra ,Algebra ,Nuclear and High Energy Physics ,Pure mathematics ,Verma module ,Current algebra ,Virasoro algebra ,Cellular algebra ,Statistical and Nonlinear Physics ,Superconformal algebra ,N = 2 superconformal algebra ,Mathematical Physics ,Mathematics - Published
- 2002
- Full Text
- View/download PDF
24. Central extensions of Lie superalgebras
- Author
-
Yoshiyuki Koga and Kenji Iohara
- Subjects
Discrete mathematics ,Pure mathematics ,General Mathematics ,Simple Lie group ,Mathematics::Rings and Algebras ,Adjoint representation ,Lie superalgebra ,(g,K)-module ,Lie conformal algebra ,Graded Lie algebra ,Adjoint representation of a Lie algebra ,Representation of a Lie group ,Mathematics::Quantum Algebra ,Mathematics::Representation Theory ,Mathematics - Abstract
For a commutative algebra A over a commutative ring k satisfying certain conditions, we construct the universal central extension of \( {\frak g}_k \otimes_k A \), regarded as a Lie superalgebra over k, where \( {\frak g}_k \) denotes a basic classical Lie superalgebra over k. To consider basic classical Lie superalgebras over an ring k, we also show the existence of their Chevalley basis. Our results contain not only the descriptions of the untwisted affine Lie superalgebras but also those of the toroidal Lie superalgebras.
- Published
- 2001
- Full Text
- View/download PDF
25. Résolutions de type Bechi–Rouet–Stora–Tyutin pour les super-algèbres de Virasoro N=1
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Subjects
Pure mathematics ,Lie algebra ,General Medicine ,Mathematics ,Resolution (algebra) - Abstract
Resume Nous construisons des resolutions de type Bechi–Rouet–Stora–Tyutin (abrege en BRST) pour les modeles super-minimaux N =1.
- Published
- 2000
- Full Text
- View/download PDF
26. Notes on Differential Equations Arising from a Representation of 2-Toroidal Lie Algebras
- Author
-
Kenji Iohara, Yoshihisa Saito, and Minoru Wakimoto
- Subjects
Physics ,Adjoint representation of a Lie algebra ,Pure mathematics ,Representation of a Lie group ,Physics and Astronomy (miscellaneous) ,Adjoint representation ,Fundamental representation ,Lie theory ,Affine Lie algebra ,Lie conformal algebra ,Knizhnik–Zamolodchikov equations - Published
- 1999
- Full Text
- View/download PDF
27. Sur une formule des caractères pour les algèbres de Kac-Moody symétrisables
- Author
-
Kenji Iohara
- Subjects
High Energy Physics::Theory ,Pure mathematics ,Mathematics(all) ,Character (mathematics) ,Mathematics::Quantum Algebra ,General Mathematics ,Irreducible representation ,Applied Mathematics ,Mathematics::Representation Theory ,Kac–Moody algebra ,Mathematics - Abstract
RésuméSoit g une algèbre de Kac-Moody symétrisable. Dans [KW1], Kac et Wakimoto ont démontré une formule des caractères pour une grande classe de g-modules simples de plus grand poids qui comprend des g-modules intégrables comme cas particulier. Nous obtenons une extension de la formule de Kac et Wakimoto.AbstractLet g be a symmetrizable Kac-Moody algebra. In [KW1], Kac and Wakimoto proved a character fomula for a large class of irreducible highest weight g-modules which includes integrable modules as a special case. We obtain an extension of Kac and Wakimoto's formula.
- Published
- 1997
- Full Text
- View/download PDF
28. Drinfeld comultiplication and vertex operators
- Author
-
Kenji Iohara and Jintai Ding
- Subjects
Vertex (graph theory) ,Bosonization ,Quantum affine algebra ,Pure mathematics ,Current (mathematics) ,General Physics and Astronomy ,Simple (abstract algebra) ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Geometry and Topology ,Connection (algebraic framework) ,Quantum ,Realization (systems) ,Mathematical Physics ,Mathematics - Abstract
For the current realization of the quantum affine algebras, Drinfeld gave a simple comultiplication of the quantum current operators. With this comultiplication, we study the related vertex operators for the case of $U_q(\hgtsl_n)$ and give an explicit bosonization of these new vertex operators. We use these vertex operators to construct the quantum current operators of $U_q(\hgtsl_n)$ and discuss its connection with quantum boson-fermion correspondence., Comment: Amslatex 13 pages
- Published
- 1997
- Full Text
- View/download PDF
29. [Untitled]
- Author
-
Jintai Ding and Kenji Iohara
- Subjects
Quadratic algebra ,Algebra ,Quantum affine algebra ,Quantum group ,Mathematics::Quantum Algebra ,Current algebra ,Algebra representation ,Statistical and Nonlinear Physics ,Representation theory of Hopf algebras ,Quasitriangular Hopf algebra ,Hopf algebra ,Mathematical Physics ,Mathematics - Abstract
Drinfeld gave a current realization of the quantum affine algebras as a Hopf algebra with a simple comultiplication for the quantum current operators. In this Letter, we will present a generalization of such a realization of quantum Hopf algebras. As a special case, we will choose the structure functions for this algebra to be elliptic functions to derive certain elliptic quantum groups as a Hopf algebra, which degenerates into quantum affine algebras if we take certain degeneration of the structure functions.
- Published
- 1997
- Full Text
- View/download PDF
30. A Global version of Grozman's theorem
- Author
-
Olivier Mathieu, Kenji Iohara, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Algèbre, géométrie, logique (AGL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
- Subjects
Pure mathematics ,Geometric context ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,General Mathematics ,010102 general mathematics ,Bilinear interpolation ,Algebraic geometry ,Differential operator ,01 natural sciences ,Manifold ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,Equivariant map ,Quantum Algebra (math.QA) ,010307 mathematical physics ,0101 mathematics ,Representation Theory (math.RT) ,Tensor density ,Mathematics - Representation Theory ,Mathematics - Abstract
Let \(X\) be a manifold. The classification of all equivariant bilinear maps between tensor density modules over \(X\) has been investigated by Grozman (Funct Anal Appl 14(2):58–59, 1980), who has provided a full classification for those which are differential operators. Here we investigate the same question without the hypothesis that the maps are differential operators. In our paper, the geometric context is algebraic geometry and the manifold \(X\) is the circle \(\text{ Spec}\, \mathbb{C }[z,z^{-1}]\). Our main motivation comes from the fact that such a classification is required to complete the proof of the main result of Iohara and Mathieu (Proc Lond Math Soc, 2012, in press). Indeed it requires to also include the case of deformations of tensor density modules.
- Published
- 2013
- Full Text
- View/download PDF
31. Bosonic representations of Yangian double with
- Author
-
Kenji Iohara
- Subjects
Pure mathematics ,Formalism (philosophy of mathematics) ,Mathematics::Quantum Algebra ,Gauss ,General Physics and Astronomy ,Statistical and Nonlinear Physics ,Affine transformation ,Yangian ,Quantum ,Mathematical Physics ,Mathematical physics ,Mathematics - Abstract
On the basis of the `RTT=TTR' formalism, we introduce the quantum double of the Yangian for with a central extension. The Gauss decomposition of the T-matrices gives us the so-called Drinfel'd generators. Using these generators, we present some examples of both finite- and infinite-dimensional representations that are quite natural deformations of their corresponding affine counterpart.
- Published
- 1996
- Full Text
- View/download PDF
32. A central extension of DY h(gl2) and its vertex representations
- Author
-
Kenji Iohara and Mika Kohno
- Subjects
Vertex (graph theory) ,Combinatorics ,Bosonization ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Statistical and Nonlinear Physics ,Extension (predicate logic) ,Mathematical Physics ,Mathematics - Abstract
A central extension of $\cD Y_{\hbar}(\gtgl_2)$ is proposed. The bosonization of level $1$ module and vertex operators are also given., Comment: 10 pages, AmsLatex, to appear in Lett. in Math. Phys
- Published
- 1996
- Full Text
- View/download PDF
33. Representation Theory of the Virasoro Algebra
- Author
-
Kenji Iohara, Yoshiyuki Koga, Kenji Iohara, and Yoshiyuki Koga
- Subjects
- Representations of Lie algebras
- Abstract
The Virasoro algebra is an infinite dimensional Lie algebra that plays an increasingly important role in mathematics and theoretical physics. This book describes some fundamental facts about the representation theory of the Virasoro algebra in a self-contained manner. Topics include the structure of Verma modules and Fock modules, the classification of (unitarizable) Harish-Chandra modules, tilting equivalence, and the rational vertex operator algebras associated to the so-called minimal series representations.Covering a wide range of material, this book has three appendices which provide background information required for some of the chapters. The authors organize fundamental results in a unified way and refine existing proofs. For instance in chapter three, a generalization of Jantzen filtration is reformulated in an algebraic manner, and geometric interpretation is provided. Statements, widely believed to be true, are collated, and results which are known but not verified are proven, such as the corrected structure theorem of Fock modules in chapter eight.This book will be of interest to a wide range of mathematicians and physicists from the level of graduate students to researchers.
- Published
- 2011
34. Notes on Highest Weight Modules of the Elliptic Algebra $\mathfrak{A}_{q, p}(\hat{sl_2})$
- Author
-
Michio Jimbo, Tetsuji Miwa, Hong Yan, Rinat Kedem, Omar Foda, and Kenji Iohara
- Subjects
Physics ,Algebra ,Verma module ,Physics and Astronomy (miscellaneous) ,Algebra over a field - Published
- 1995
- Full Text
- View/download PDF
35. Symmetries, Integrable Systems and Representations
- Author
-
Kenji Iohara, Sophie Morier-Genoud, Bertrand Rémy, Algèbre, géométrie, logique (AGL), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Global COE programme 'The research and training center for new development in mathematics' (Graduate School of Mathematical Science, University of Tokyo), Institut Universitaire de France, GDR 3395 'Théorie de Lie algébrique et géométrique', GDRE 571 'Representation theory', Université Lyon 1, Université Paris 6., Institut Camille Jordan (ICJ), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Discrete mathematics ,Pure mathematics ,Structure constants ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,010102 general mathematics ,Lie superalgebra ,Category O ,Dynkin index ,01 natural sciences ,Cluster algebra ,Representations ,Symmetry ,Tensor product ,Infinite Analysis ,Vertex operator algebra ,Theoretical ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,Integrable systems ,010307 mathematical physics ,Lie theory ,0101 mathematics ,Mathematics::Representation Theory ,Mathematical & Computational Physics ,Mathematics - Abstract
A presentation of the deformed W1+1 algebra.- Generating series of the Poincare polynomials of quasihomogeneous Hilbert schemes.- PBW filtration over Z and compatible bases for VZ(_) in type An and Cn.- On the subgeneric restricted blocks of affine category O at the critical level.- Slavnov determinants, Yang-Mills structure constants, and discrete KP.- Monodromy of partial KZ functors for rational Cherednik algebras.- Category of finite dimensional modules over an orthosymplectic Lie superalgebra: small rank examples.- Monoidal categorifications of cluster algebras of type A and D.- A classification of roots of symmetric Kac-Moody root systems and its application.- Fermions acting on quasi-local operators in the XXZ model.- The Romance of the Ising Model.- A(1) n -Geometric Crystal corresponding to Dynkin index i = 2 and its ultra-discretization.- A Z3-orbifold theory of lattice vertex operator algebra and Z3-orbifold constructions.- Words, automata and Lie theory for tilings.- Toward Berenstein-Zelevinsky data in affine type A, part III: Proof of the connectedness.- Quiver varieties and tensor products, II.- Derivatives of Schur, Tau and Sigma Functions on Abel-Jacobi Images.- Pade interpolation for elliptic Painleve equation.- Non-commutative harmonic oscillators.- The inversion formula of polylogarithms and the Riemann-Hilbert problem.- Some remarks on the Quantum Hall Effect.- Ordinary differential equations on rational elliptic surfaces.- On the spectral gap of the Kac walk and other binary collision processes on d-dimensional lattice.- A restricted sum formula for a q-analogue of multiple zeta values.- A trinity of the Borcherds _-function.- Sum rule for the eight-vertex model on its combinatorial line.
- Published
- 2012
- Full Text
- View/download PDF
36. An elliptic quantum algebra for $$\widehat{s1}_2 $$ 2
- Author
-
Hong Yan, Tetsuji Miwa, Omar Foda, Kenji Iohara, Michio Jimbo, and Rinat Kedem
- Subjects
Vertex (graph theory) ,Pure mathematics ,Mathematics::Quantum Algebra ,Quantum algebra ,Statistical and Nonlinear Physics ,Limit (mathematics) ,Trigonometry ,Algebra over a field ,Mathematical Physics ,Quotient ,Interpretation (model theory) ,Mathematics ,Moduli - Abstract
An elliptic deformation of $$\widehat{s1}_2 $$ is proposed. Our presentation of the algebra is based on the relationRLL = LLR *, whereR andR * are eight-vertexR-matrices with the elliptic moduli chosen differently. In the trigonometric limit, this algebra reduces to a quotient of that proposed by Reshetikhin and Semenov-Tian-Shansky. Conjectures concerning highest-weight modules and vertex operators are formulated, and the physical interpretation ofR * is discussed.
- Published
- 1994
- Full Text
- View/download PDF
37. Rings of skew polynomials and Gel'fand-Kirillov conjecture for quantum groups
- Author
-
Feodor Malikov and Kenji Iohara
- Subjects
High Energy Physics - Theory ,Physics ,Pure mathematics ,Ring (mathematics) ,Conjecture ,Verma module ,Quantum group ,Polynomial ring ,Skew ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,Automorphism ,17B37 ,High Energy Physics - Theory (hep-th) ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Mathematical Physics ,Quotient - Abstract
We introduce and study action of quantum groups on skew polynomial rings and related rings of quotients. This leads to a ``q-deformation'' of the Gel'fand-Kirillov conjecture which we partially prove. We propose a construction of automorphisms of certain non-commutaive rings of quotients coming from complex powers of quantum group generators; this is applied to explicit calculation of singular vectors in Verma modules over $U_{q}(\gtsl_{n+1})$. We finally give a definition of a $q-$connection with coefficients in a ring of skew polynomials and study the structure of quantum group modules twisted by a $q-$connection., Comment: 25 pages
- Published
- 1994
- Full Text
- View/download PDF
38. Classification of Simple Lie Algebras on a Lattice
- Author
-
Olivier Mathieu, Kenji Iohara, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Algèbre, géométrie, logique (AGL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
- Subjects
Pure mathematics ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Mathematics::Commutative Algebra ,General Mathematics ,High Energy Physics::Lattice ,Mathematics::Rings and Algebras ,010102 general mathematics ,Open set ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,01 natural sciences ,Lattice (order) ,0103 physical sciences ,Lie algebra ,FOS: Mathematics ,010307 mathematical physics ,Affine transformation ,Representation Theory (math.RT) ,0101 mathematics ,Mathematics - Representation Theory ,Mathematical Physics ,Mathematics - Abstract
Let Λ = Z for some n ≥ 1. The aim of the paper is to classify all simple Λ-graded Lie algebras L = ⊕ λ∈Λ Lλ, such that dimLλ = 1 for all λ. The classification involves two affine Lie algebras, namely A (1) 1 and A (2) 2 , and a familly (Wπ), parametrized by a dense open set of the space of all embeddings π : Λ→ C. The family (Wl) of generalized Witt algebras, indexed by all embeddings l : Λ → C, appears as a sub-family. In general, the algebras Wπ are described as Lie algebras of symbols of twisted pseudo-differential operators.
- Published
- 2011
- Full Text
- View/download PDF
39. Fock Modules
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Published
- 2011
- Full Text
- View/download PDF
40. Rational Vertex Operator Algebras
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Subjects
Combinatorics ,Vertex (graph theory) ,Vertex operator algebra ,Operator algebra ,Nest algebra ,Shift operator ,Mathematics - Abstract
The rationality of the vertex operator algebras associated to minimal series representations is given as an application of the results obtained in Chapters 5 and 6. The fusion algebra associated to such a vertex operator algebra is also given. One of the beautiful and important characterisations of the BPZ series representations is presented with two appendices which provide some necessary background.
- Published
- 2011
- Full Text
- View/download PDF
41. Determinant Formulae
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Published
- 2011
- Full Text
- View/download PDF
42. Unitarisable Harish-Chandra Modules
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Subjects
Pure mathematics ,Verma module ,Integrable system ,Sesquilinear form ,Mathematics - Abstract
We show that certain irreducible highest weight Vir-modules are unitarisable with the aid of unitarisability of integrable highest weight \(\hat {\mathfrak {sl}}_{2}\)-modules. The complete classification of the unitarisable Harish-Chandra modules is given as the goal of these two chapters.
- Published
- 2011
- Full Text
- View/download PDF
43. Preliminary
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Published
- 2011
- Full Text
- View/download PDF
44. Coset Constructions for $\hat {\mathfrak {sl}}_{2}$
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Subjects
Algebra ,Pure mathematics ,Integrable system ,Coset ,Mathematics - Abstract
We show that certain irreducible highest weight Vir-modules are unitarisable with the aid of unitarisability of integrable highest weight \(\hat {\mathfrak {sl}}_{2}\)-modules. The complete classification of the unitarisable Harish-Chandra modules is given as the goal of these two chapters.
- Published
- 2011
- Full Text
- View/download PDF
45. Classification of Harish-Chandra Modules
- Author
-
Yoshiyuki Koga and Kenji Iohara
- Subjects
Pure mathematics ,Reduction (recursion theory) ,Conjecture ,General theory ,Simple (abstract algebra) ,Type (model theory) ,Mathematics - Abstract
We explain the proof of the conjecture of V. Kac which says that any simple ℤ-graded Vir-module with finite multiplicities is either a highest weight module, a lowest weight module, or the module of type t λ ℂ[t,t −1](dt) μ . The proof is given by the reduction to positive characteristic cases. Hence, for the reader who is not familiar with Lie p-algebras and their representations, we make a brief survey of the general theory of Lie p-algebras in Appendix B that are used in the proof. This chapter can be read independently of other chapters.
- Published
- 2011
- Full Text
- View/download PDF
46. Verma Modules I: Preliminaries
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Subjects
Pure mathematics ,Verma module ,Series (mathematics) ,Simple (abstract algebra) ,Filtration (mathematics) ,Structure (category theory) ,Type (model theory) ,Mathematics::Representation Theory ,Central charge ,Mathematics ,Resolution (algebra) - Abstract
The structure of Verma modules is analyzed in detail. Starting from the classification of the highest weights, the structure of the Jantzen filtration of Verma modules is completely determined from which the Bernstein−Gelfand−Gelfand type resolution follows. As a simple corollary, the characters of the all irreducible highest weight modules over Vir are given. In particular, the characters of minimal series representations, with fixed central charge, forms a vector-valued SL(2,ℤ)-modular form and its modular transformations are also calculated.
- Published
- 2011
- Full Text
- View/download PDF
47. A Duality among Verma Modules
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Subjects
Exact sequence ,Pure mathematics ,Verma module ,Mathematics::Quantum Algebra ,Lie algebra ,Virasoro algebra ,Generalized Verma module ,Abelian category ,Equivalence (formal languages) ,Mathematics::Representation Theory ,Computer Science::Databases ,Mathematics - Abstract
The tilting equivalence for a certain class of ℤ-graded Lie algebras is explained. In particular, for the Virasoro algebra, this explains the structural duality between Verma modules with highest weights (c,h) and (26−c,1−h) which can be observed by analyzing Verma modules. This chapter can be read independently of other chapters.
- Published
- 2011
- Full Text
- View/download PDF
48. Verma Modules II: Structure Theorem
- Author
-
Yoshiyuki Koga and Kenji Iohara
- Subjects
Pure mathematics ,Verma module ,Simple (abstract algebra) ,Modular form ,Structure (category theory) ,Filtration (mathematics) ,Generalized Verma module ,Mathematics::Representation Theory ,Structured program theorem ,Mathematics ,Resolution (algebra) - Abstract
The structure of Verma modules is analyzed in detail. Starting from the classification of the highest weights, the structure of the Jantzen filtration of Verma modules is completely determined from which the Bernstein−Gelfand−Gelfand type resolution follows. As a simple corollary, the characters of the all irreducible highest weight modules over Vir are given. In particular, the characters of minimal series representations, with fixed central charge, forms a vector-valued SL(2,ℤ)-modular form and its modular transformations are also calculated.
- Published
- 2011
- Full Text
- View/download PDF
49. Unitarizable Highest Weight Modules of the N=2 Super-Virasoro Algebras: Untwisted sector
- Author
-
Kenji Iohara, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,010102 general mathematics ,N = 2 super Virasoro algebras ,Statistical and Nonlinear Physics ,01 natural sciences ,Algebra ,unitarizable modules ,High Energy Physics::Theory ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Mathematics::Quantum Algebra ,0103 physical sciences ,Classification theorem ,Virasoro algebra ,0101 mathematics ,Mathematics::Representation Theory ,010306 general physics ,Mathematical Physics ,ComputingMilieux_MISCELLANEOUS ,Mathematics - Abstract
In this article, we prove the classification theorem of the unitarizable highest weight modules over the N = 2 super Virasoro algebras for the untwisted sector, stated by Boucher et al. (Phys Lett B 172:316–322, 1986).
- Published
- 2010
- Full Text
- View/download PDF
50. Fusion Algebras for Superconformal Field Theories through Coinvariants II : Ramond Sector
- Author
-
Kenji Iohara and Yoshiyuki Koga
- Subjects
Fusion ,Series (mathematics) ,Field (physics) ,010308 nuclear & particles physics ,General Mathematics ,010102 general mathematics ,01 natural sciences ,High Energy Physics::Theory ,Theoretical physics ,Mathematics::K-Theory and Homology ,0103 physical sciences ,Fusion rules ,0101 mathematics ,Mathematics - Abstract
We determine the fusion rules for the minimal series representations over the super-Virasoro algebras including the Ramond sector.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.