Magnesium alloy has been widely investigated as biodegradable cardiovascular stent and bone implant. Its application for biodegradable esophageal stenting remains unexplored. This paper reports the biodegradation behaviors of AZ31 magnesium alloy in artificial saliva and various types of beverage in vitro. Results show that the magnesium ion release rate of AZ31 in artificial saliva for a stent (2cm diameter, 10cm length at 50% stent surface coverage) is 43 times lower than the daily allowance of human body magnesium intakes. The degradation rates of AZ31 in different beverages could also be significantly different. These results suggest that the esophagus in nature is a less aggressive chemical environment for degradation of magnesium alloys. The significant difference in degradation rates of AZ31 in different beverages opens new opportunities for development of degradation controllable esophageal stent through customizing ingested beverages., {"references":["","J. L. Tokar, S. Banerjee, B. A. Barth, D. J. Desilets, V. Kual, S.R. Kethi\net al., Drug-eluting/biodegradable stents. Gastrointestinal Endoscopy,\n2011. 74(5): p. 954-958.","S. Irani. and R. Kozarek, Esophageal stents: past, present, and future.\n2010. 12(4): p. 178-190.","P. Sharma and R. Kozarek, Role of esophageal stents in benign and\nmalignant Diseases. Am J Gastroenterol, 2009. 105(2): p. 258-273","X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, In vitro corrosion and\nbiocompatibility of binary magnesium alloys. Biomaterials, 2009. 30(4):\np. 484-498.","S. Schumacher, J. Stahl, W. Bäumer, J. M. Seitz, F. W Bach, L. J.\nPetersen, Ex vivo examination of the biocompatibility of biodegradable\nmagnesium via microdialysis in the isolated perfused bovine udder\nmodel. International Journal of Artificial Organs, 2011. 34(1): p. 34-43.","G. L. Diamond, P.E. Goodrum, S.P. Felter, W. L. Ruoff, Gastrointestinal\nabsorption of metals. Drug and Chemical Toxicology, 1997. 20(4): p.\n345-368.","F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, et al.,\nDegradable biomaterials based on magnesium corrosion. Current\nOpinion in Solid State and Materials Science, 2009. 12(5-6): p. 63-72.","R. C. Orlando, Esophageal mucosal defense mechanisms. GI Mobility\nonline, 2006.","J-Y. Gal, Y. Fovet, and M. Adib-Yadzi, About a synthetic saliva for in\nvitro studies. Talanta, 2001. 53(6): p. 1103-1115.\n[10] A. Loos, R. Rohde, A. Haverich and S. Barlach, In vitro and in vivo\nbiocompatibility testing of absorbable metal stents. Macromolecular\nSymposia, 2007. 253: p. 103-108.\n[11] H. Sigel and A. Sigel, Bioinorganic Chemistry of Metal toxicity, in\nMetal ions in biological systems: concepts on metal ion toxicity, 1986,\nCRC Press. p. 25.\n[12] G.S. Duffó and S.B. Farina, Corrosion behaviour of a dental alloy in\nsome beverages and drinks. Materials Chemistry and Physics, 2009.\n115(1): p. 235-238.\n[13] J.E. Moore Jr, J.S. Soares, and K.R. Rajagopal, Biodegradable stents:\nbiomechanical modeling challenges and opportunities. Cardiovascular\nEngineering and Technology, 2010. 1(1): p. 52-65.\n[14] G.P. Talwar and L.M. Srivastava, Gastrointestinal tract, in Textbook of\nBiochemistry and Human Biologiy. 2003. p. 599-602\n[15] M. Mobin, M.A. Khan, and M. Parveen, Inhibition of mild steel\ncorrosion in acidic medium using starch and surfactants additives.\nJournal of Applied Polymer Science, 2011. 121(3): p. 1558-1565.\n[16] E.S. Ferreira, C. Giacomelli, F.C. Giacomelli, A. Spinelli., Evaluation of\nthe inhibitor effect of l-ascorbic acid on the corrosion of mild steel.\nMaterials Chemistry and Physics, 2004. 83(1): p. 129-134.\n[17] M.S.S. Morad and A.A.A. Hermas, Influence of some amino acids and\nvitamin C on the anodic dissolution of tin in sodium chloride solution.\nJournal of Chemical Technology & Biotechnology, 2001. 76(4): p. 401-\n410.\n[18] A. Yamamoto and S. Hiromoto, Effect of inorganic salts, amino acids\nand proteins on the degradation of pure magnesium in vitro. Materials\nScience and Engineering C, 2009. 29(5): p. 1559-1568.\n[19] N.H. Helal and W.A. Badawy, Environmentally safe corrosion inhibition\nof Mg–Al–Zn alloy in chloride free neutral solutions by amino acids.\nElectrochimica Acta, 2011. 56(19): p. 6581-6587.\n[20] L. Ramalingam, L.B. Messer, and E.C. Reynolds, Adding casein\nphosphopeptide-amorphous calcium phosphate to sports drinks to\neliminate in vitro erosion. Pediatric Dentistry, 2005. 27(1): p. 61-67."]}