62 results on '"Oleg Ogievetsky"'
Search Results
2. Extremal Cylinder Configurations II: Configuration O6.
- Author
-
Oleg Ogievetsky and Senya B. Shlosman
- Published
- 2022
- Full Text
- View/download PDF
3. The Six Cylinders Problem: $\mathbb {D}_{3}$-Symmetry Approach.
- Author
-
Oleg Ogievetsky and Senya B. Shlosman
- Published
- 2021
- Full Text
- View/download PDF
4. Extremal Cylinder Configurations I: Configuration $C_{\mathfrak {m}}$.
- Author
-
Oleg Ogievetsky and Senya B. Shlosman
- Published
- 2021
- Full Text
- View/download PDF
5. On Quasiperiodic Space Tilings, Inflation, and Dehn Invariants.
- Author
-
Oleg Ogievetsky and Zorka Papadopolos
- Published
- 2001
- Full Text
- View/download PDF
6. Critical configurations of solid bodies and the Morse theory of MIN functions
- Author
-
Senya Shlosman and Oleg Ogievetsky
- Subjects
General Mathematics ,010102 general mathematics ,FOS: Physical sciences ,Metric Geometry (math.MG) ,Mathematical Physics (math-ph) ,Radius ,01 natural sciences ,Manifold ,Combinatorics ,Mathematics - Metric Geometry ,0103 physical sciences ,FOS: Mathematics ,Cluster (physics) ,Ball (bearing) ,010307 mathematical physics ,0101 mathematics ,Mathematical Physics ,Morse theory ,Mathematics - Abstract
We study the manifold of clusters of nonintersecting congruent solid bodies, all touching the central ball $B\subset\mathbb{R}^{3}$ of radius one. Two main examples are clusters of balls and clusters of infinite cylinders. We introduce the notion of \textit{critical cluster} and we study several critical clusters of balls and of cylinders. For the case of cylinders some of our critical clusters are new. We also establish the criticality properties of clusters, introduced earlier by W. Kuperberg., Comment: arXiv admin note: text overlap with arXiv:1812.09543
- Published
- 2019
- Full Text
- View/download PDF
7. Integrability, Quantization, and Geometry
- Author
-
Senya Shlosman, Sergey Novikov, Igor Krichever, and Oleg Ogievetsky
- Subjects
Physics ,Quantization (signal processing) ,Algebraic geometry ,Quantum ,Mathematical physics - Published
- 2021
- Full Text
- View/download PDF
8. Extremal Cylinder Configurations I: Configuration $C_{\mathfrak{m}}$
- Author
-
Senya Shlosman, Oleg Ogievetsky, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E2 Géométrie, Physique et Symétries, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and ANR-19-CE40-0021,Phymath,physique mathématique(2019)
- Subjects
Path (topology) ,Unit sphere ,050101 languages & linguistics ,Rational number ,05 social sciences ,Metric Geometry (math.MG) ,02 engineering and technology ,Square (algebra) ,Theoretical Computer Science ,Moduli space ,Cylinder (engine) ,law.invention ,Combinatorics ,Mathematics - Metric Geometry ,Computational Theory and Mathematics ,law ,Homogeneous space ,0202 electrical engineering, electronic engineering, information engineering ,FOS: Mathematics ,Discrete Mathematics and Combinatorics ,020201 artificial intelligence & image processing ,0501 psychology and cognitive sciences ,Geometry and Topology ,[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG] ,Mathematics - Abstract
We study the path $$\Gamma =\{ C_{6,x}\mid x\in [0,1]\}$$ in the moduli space of configurations of six equal cylinders touching the unit sphere. Among the configurations $$C_{6,x}$$ is the record configuration $$C_{\mathfrak {m}}$$ of Ogievetsky and Shlosman (Discrete Comput Geom 2019, https://doi.org/10.1007/s00454-019-00064-3 ). We show that $$C_{\mathfrak {m}}$$ is a local sharp maximum of the distance function, so in particular the configuration $$C_{\mathfrak {m}}$$ is not only unlockable but rigid. We show that if $${(1 + x) (1 + 3 x)}/{3}$$ is a rational number but not a square of a rational number, the configuration $$C_{6,x}$$ has some hidden symmetries, part of which we explain.
- Published
- 2021
- Full Text
- View/download PDF
9. Integrability, Quantization, and Geometry
- Author
-
Sergey Novikov, Igor Krichever, Oleg Ogievetsky, Senya Shlosman, Sergey Novikov, Igor Krichever, Oleg Ogievetsky, and Senya Shlosman
- Subjects
- Topology, Geometry, Algebraic, Quantum theory, Homology theory
- Abstract
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
- Published
- 2021
10. The Six Cylinders Problem: $\mathbb{D}_{3}$-symmetry Approach
- Author
-
Senya Shlosman, Oleg Ogievetsky, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E2 Géométrie, Physique et Symétries, and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Unit sphere ,050101 languages & linguistics ,05 social sciences ,Metric Geometry (math.MG) ,02 engineering and technology ,Radius ,Manifold ,Theoretical Computer Science ,Combinatorics ,Mathematics - Metric Geometry ,Computational Theory and Mathematics ,0202 electrical engineering, electronic engineering, information engineering ,FOS: Mathematics ,Discrete Mathematics and Combinatorics ,020201 artificial intelligence & image processing ,0501 psychology and cognitive sciences ,Geometry and Topology ,Symmetry (geometry) ,[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG] ,Mathematics - Abstract
Motivated by a question of W. Kuperberg, we study the 18-dimensional manifold of configurations of six non-intersecting infinite cylinders of radius r, all touching the unit ball in $$\mathbb {R}^{3}$$ . We find a configuration with $$\begin{aligned} r=\frac{1}{8}\Big ( 3+\sqrt{33}\Big ) \approx 1.093070331. \end{aligned}$$ We believe that this value is the maximum possible.
- Published
- 2020
- Full Text
- View/download PDF
11. Cayley–Hamilton theorem for symplectic quantum matrix algebras
- Author
-
Pavel Pyatov, Oleg Ogievetsky, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E2 Géométrie, Physique et Symétries, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and ANR-19-CE40-0021,Phymath,physique mathématique(2019)
- Subjects
Pure mathematics ,FOS: Physical sciences ,General Physics and Astronomy ,Type (model theory) ,01 natural sciences ,Classical limit ,Mathematics::Group Theory ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,Quantum Algebra (math.QA) ,[MATH]Mathematics [math] ,0101 mathematics ,Mathematics::Symplectic Geometry ,Quantum ,Mathematical Physics ,Characteristic polynomial ,Mathematics ,R-matrix ,010102 general mathematics ,Matrix mechanics ,Mathematical Physics (math-ph) ,16. Peace & justice ,010307 mathematical physics ,Geometry and Topology ,Cayley–Hamilton theorem ,Symplectic geometry - Abstract
We establish the analogue of the Cayley--Hamilton theorem for the quantum matrix algebras of the symplectic type., Comment: arXiv admin note: text overlap with arXiv:math/0511618
- Published
- 2021
- Full Text
- View/download PDF
12. Fusion procedure for the walled Brauer algebra
- Author
-
D.V. Bulgakova, Oleg Ogievetsky, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E2 Géométrie, Physique et Symétries, and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Mathematics::Rings and Algebras ,010102 general mathematics ,FOS: Physical sciences ,General Physics and Astronomy ,Fusion procedure ,Mathematical Physics (math-ph) ,Rational function ,01 natural sciences ,Physics::Fluid Dynamics ,0103 physical sciences ,FOS: Mathematics ,Pairwise comparison ,010307 mathematical physics ,Geometry and Topology ,Representation Theory (math.RT) ,0101 mathematics ,Mathematics::Representation Theory ,Mathematics - Representation Theory ,ComputingMilieux_MISCELLANEOUS ,Mathematical Physics ,Mathematics ,Brauer algebra - Abstract
We establish two versions of the fusion procedure for the walled Brauer algebras. In each of them, a complete system of primitive pairwise orthogonal idempotents for the walled Brauer algebra is constructed by consecutive evaluations of a rational function in several variables on contents of standard walled tableaux.
- Published
- 2020
- Full Text
- View/download PDF
13. Contravariant form for reduction algebras
- Author
-
Sergey Khoroshkin, Oleg Ogievetsky, Bogoliubov Laboratory of Theoretical Physics [Dubna] (BLTP), Joint Institute for Nuclear Research (JINR), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E2 Géométrie, Physique et Symétries, and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010102 general mathematics ,Diagonal ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,General Physics and Astronomy ,Differential operator ,01 natural sciences ,Wedge (geometry) ,Algebra ,Tensor product ,0103 physical sciences ,Lie algebra ,Covariance and contravariance of vectors ,Fundamental representation ,010307 mathematical physics ,Geometry and Topology ,0101 mathematics ,Mathematical Physics ,Mathematics - Abstract
We define contravariant forms on diagonal reduction algebras, algebras of h -deformed differential operators and on standard modules over these algebras. We study properties of these forms and their specializations. We show that the specializations of the forms on the spaces of h -commuting variables present zero singular vectors iff they are in the kernel of the specialized form. As an application we compute norms of highest weight vectors in the tensor product of an irreducible finite dimensional representation of the Lie algebra gl n with a symmetric or wedge tensor power of its fundamental representation.
- Published
- 2018
- Full Text
- View/download PDF
14. Induced representations and traces for chains of affine and cyclotomic Hecke algebras
- Author
-
L. Poulain d'Andecy, Oleg Ogievetsky, CPT - E2 Géométrie, Physique et Symétries, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Korteweg-de Vries Institute for Mathematics (KdVI), University of Amsterdam [Amsterdam] (UvA), and Algebra, Geometry & Mathematical Physics (KDV, FNWI)
- Subjects
Double affine Hecke algebra ,Pure mathematics ,Induced representation ,010308 nuclear & particles physics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,010102 general mathematics ,General Physics and Astronomy ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,01 natural sciences ,Reflection (mathematics) ,Chain (algebraic topology) ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Geometry and Topology ,Affine transformation ,0101 mathematics ,Algebra over a field ,ComputingMilieux_MISCELLANEOUS ,Mathematical Physics ,Hecke operator ,Mathematics - Abstract
Properties of relative traces and symmetrizing forms on chains of cyclotomic and affine Hecke algebras are studied. The study relies on the use of bases of these algebras which generalize a normal form for elements of the complex reflection groups G ( m , 1 , n ) , m = 1 , 2 , … , ∞ , constructed by a recursive use of the Coxeter–Todd algorithm. Formulas for inducing, from representations of an algebra in the chain, representations of the next member of the chain are presented.
- Published
- 2015
- Full Text
- View/download PDF
15. Differential Calculus on h-Deformed Spaces
- Author
-
Oleg Ogievetsky, Basile Herlemont, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E2 Géométrie, Physique et Symétries, and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,Yang-Baxter equation ,Poincaré–Birkhoff–Witt property ,FOS: Physical sciences ,Witt algebra ,Universal enveloping algebra ,universal enveloping algebra ,2010 Mathematics Subject Classication: 16S30 ,16S32 ,16T25 ,13B30 ,17B10 ,39A14 ,01 natural sciences ,Representation theory ,reduction algebras ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Representation Theory (math.RT) ,0101 mathematics ,Differential operators ,rings of fractions ,Mathematical Physics ,Mathematics ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,Yang–Baxter equation ,[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA] ,010102 general mathematics ,representation theory ,Differential calculus ,Mathematics - Rings and Algebras ,Mathematical Physics (math-ph) ,Differential operator ,Algebra ,Rings and Algebras (math.RA) ,differential operators ,Reduction algebras ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Rings of fractions ,010307 mathematical physics ,Geometry and Topology ,Poincaré-Birkhoff-Witt property ,Mathematics - Representation Theory ,Analysis ,Algebraic differential equation - Abstract
L'anneau $\Diff(n)$ des operateurs differentiels $\h$-deformes apparait dans la theorie des algebres de reduction.Dans cette these, nous construisons les anneaux des operateurs differentiels generalises sur les espaces vectoriels $\h$-deformes de type $\gl$. Contrairement aux espaces vectoriels $q$-deformes pour lequel l'anneau des operateurs differentiels est unique \`a isomorphisme pr\`es, l'anneau generalise des operateurs differentiels $\h$-deformes $\Diffs(n)$ est indexee par une fonction rationnelle $\sigma$ en $n$ variables, solution d'un syst\`eme d\'eg\'en\'er\'e d'\'equations aux diff\'erences finies. Nous obtenons la solution g\'en\'erale de ce syst\`eme. Nous montrons que le centre de $\Diffs(n)$ est un anneau des polynomes en $n$ variables. Nous construisons un isomorphisme entre des localisations de l'anneau $\Diffs(n)$ et de l’algebre de Weyl $\text{W}_n$ l’etendue par $n$ indetermines. Nous presentons des conditions irreductibilite des modules de dimension fini de $\Diffs(n)$. Finalement, nous discutons des difficultes a trouver les constructions analogues pour l'anneau $\Diff(n,N)$ correspondant \`a $N$ copies de $\Diff(n)$.
- Published
- 2017
- Full Text
- View/download PDF
16. Fusion procedure for Coxeter groups of type 𝐵 and complex reflection groups 𝐺(𝑚,1,𝑛)
- Author
-
Oleg Ogievetsky and L. Poulain d'Andecy
- Subjects
Algebra ,Combinatorics ,Reflection (mathematics) ,Applied Mathematics ,General Mathematics ,Coxeter group ,Artin group ,Rational function ,Longest element of a Coxeter group ,Point group ,Coxeter element ,Group ring ,Mathematics - Abstract
A complete system of primitive pairwise orthogonal idempotents for the Coxeter groups of type B B and, more generally, for the complex reflection groups G ( m , 1 , n ) G(m,1,n) is constructed by a sequence of evaluations of a rational function in several variables with values in the group ring. The evaluations correspond to the eigenvalues of the two arrays of Jucys–Murphy elements.
- Published
- 2014
- Full Text
- View/download PDF
17. Alternating Subalgebras of Hecke Algebras and Alternating Subgroups of Braid Groups
- Author
-
L. Poulain d'Andecy and Oleg Ogievetsky
- Subjects
Hecke algebra ,Algebra and Number Theory ,010102 general mathematics ,Braid group ,Coxeter group ,Subalgebra ,0102 computer and information sciences ,01 natural sciences ,Combinatorics ,Mathematics::Group Theory ,Coxeter graph ,010201 computation theory & mathematics ,0101 mathematics ,Mathematics::Representation Theory ,Mathematics - Abstract
For a Coxeter system (G, S) the multi-parametric alternating subalgebra H +(G) of the Hecke algebra and the alternating subgroup ℬ+(G) of the braid group are defined. Two presentations for H +(G) and ℬ+(G) are given; one generalizes the Bourbaki presentation for the alternating subgroups of Coxeter groups, another one uses generators related to edges of the Coxeter graph.
- Published
- 2014
- Full Text
- View/download PDF
18. Idempotents for Birman-Murakami-Wenzl algebras and reflection equation
- Author
-
Alexander Molev, Oleg Ogievetsky, and A. P. Isaev
- Subjects
Reflection formula ,Quantum group ,General Mathematics ,General Physics and Astronomy ,Rational function ,Mathematics::Geometric Topology ,Quadratic algebra ,Algebra ,Mathematics::Quantum Algebra ,Algebra representation ,Division algebra ,Cellular algebra ,Mathematics::Representation Theory ,Brauer group ,Mathematics - Abstract
A complete system of pairwise orthogonal minimal idempotents for Birman–Murakami–Wenzl algebras is obtained by a consecutive evaluation of a rational function in several variables on sequences of quantum contents of up-down tableaux. A byproduct of the construction is a one-parameter family of fusion procedures for Hecke algebras. Classical limits to two different fusion procedures for Brauer algebras are described.
- Published
- 2014
- Full Text
- View/download PDF
19. Rings of Fractions of Reduction Algebras
- Author
-
Sergey Khoroshkin and Oleg Ogievetsky
- Subjects
Discrete mathematics ,Pure mathematics ,General Mathematics ,010102 general mathematics ,Subalgebra ,Current algebra ,Field of fractions ,Universal enveloping algebra ,01 natural sciences ,Reductive Lie algebra ,Lie conformal algebra ,Filtered algebra ,0103 physical sciences ,Division algebra ,010307 mathematical physics ,0101 mathematics ,Mathematics::Representation Theory ,Mathematics - Abstract
We establish the absence of zero divisors in the reduction algebra of a Lie algebra ${\mathfrak{g}}$ with respect to its reductive Lie subalgebra ${\mathfrak{k}}$ . We identify the field of fractions of the diagonal reduction algebra of ${\mathfrak{sl}}_2$ with the standard skew field; as a by-product we obtain a two-parametric family of realizations of this diagonal reduction algebra by differential operators. We also present a new proof of the Poincare–Birkhoff–Witt theorem for reduction algebras.
- Published
- 2013
- Full Text
- View/download PDF
20. An inductive approach to representations of complex reflection groups G(m, 1, n)
- Author
-
Oleg Ogievetsky and L. Poulain d'Andecy
- Subjects
Pure mathematics ,Hecke algebra ,Mathematics::Combinatorics ,010308 nuclear & particles physics ,010102 general mathematics ,Statistical and Nonlinear Physics ,01 natural sciences ,Representation theory ,Tensor product ,Mathematics::Quantum Algebra ,0103 physical sciences ,Associative algebra ,0101 mathematics ,Mathematics::Representation Theory ,Reflection group ,Mathematical Physics ,Affine Hecke algebra ,Vector space ,Group ring ,Mathematics - Abstract
We propose an inductive approach to the representation theory of the chain of complex reflection groups G(m, 1, n). We obtain the Jucys-Murphy elements of G(m, 1, n) from the Jucys-Murphy elements of the cyclotomic Hecke algebra and study their common spectrum using representations of a degenerate cyclotomic affine Hecke algebra. We construct representations of G(m, 1, n) using a new associative algebra whose underlying vector space is the tensor product of the group ring ℂG(m, 1, n) with a free associative algebra generated by the standard m-tableaux.
- Published
- 2013
- Full Text
- View/download PDF
21. Jucys-Murphy elements for Birman-Murakami-Wenzl algebras
- Author
-
Oleg Ogievetsky and A. P. Isaev
- Subjects
Symmetric algebra ,Nuclear and High Energy Physics ,Pure mathematics ,Mathematics::Combinatorics ,Radiation ,010308 nuclear & particles physics ,010102 general mathematics ,Subalgebra ,Universal enveloping algebra ,Mathematics::Geometric Topology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Filtered algebra ,Algebra ,Mathematics::Group Theory ,Incidence algebra ,Mathematics::Quantum Algebra ,0103 physical sciences ,Algebra representation ,Division algebra ,Cellular algebra ,Radiology, Nuclear Medicine and imaging ,0101 mathematics ,Mathematics::Representation Theory ,Mathematics - Abstract
The Burman-Wenzl-Murakami algebra, considered as the quotient of the braid group algebra, possesses the commutative set of Jucys-Murphy elements. We show that the set of Jucys-Murphy elements is maximal commutative for the generic Birman-Wenzl-Murakami algebra and reconstruct the representation theory of the tower of Birman-Wenzl-Murakami algebras.
- Published
- 2011
- Full Text
- View/download PDF
22. ON REPRESENTATIONS OF CYCLOTOMIC HECKE ALGEBRAS
- Author
-
Oleg Ogievetsky, L. Poulain d'Andecy, Centre de Physique Théorique - UMR 6207 (CPT), Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2, Université de la Méditerranée - Aix-Marseille 2, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Hecke algebra ,Pure mathematics ,Mathematics::Number Theory ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,General Physics and Astronomy ,Young tableaux ,Deformation (meteorology) ,01 natural sciences ,Representation theory ,Set (abstract data type) ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Young tableau ,Representation Theory (math.RT) ,0101 mathematics ,Mathematics::Representation Theory ,Hecke algebras ,Mathematical Physics ,Flatness (mathematics) ,Physics ,flat deformations ,Mathematics::Combinatorics ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,010308 nuclear & particles physics ,Jucys-Murphy elements ,Young diagrams ,010102 general mathematics ,Astronomy and Astrophysics ,Mathematical Physics (math-ph) ,Basis (universal algebra) ,16. Peace & justice ,complex reflection groups ,16S80, 20C08, 81R05 ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Mathematics - Representation Theory - Abstract
International audience; An approach, based on Jucys-Murphy elements, to the representation theory of cyclotomic Hecke algebras is developed. The maximality (in the cyclotomic Hecke algebra) of the set of the Jucys-Murphy elements is established. A basis of the cyclotomic Hecke algebra is suggested; this basis is used to establish the flatness of the deformation without using the representation theory.
- Published
- 2011
- Full Text
- View/download PDF
23. Nombres de Bernoulli et une formule de Schlömilch–Ramanujan
- Author
-
Oleg Ogievetsky and Vadim Schechtman
- Subjects
Combinatorics ,General Mathematics ,Mathematics - Published
- 2010
- Full Text
- View/download PDF
24. Diagonal reduction algebra and reflection equation
- Author
-
Oleg Ogievetsky, Sergey Khoroshkin, Bogoliubov Laboratory of Theoretical Physics [Dubna] (BLTP), Joint Institute for Nuclear Research (JINR), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E2 Géométrie, Physique et Symétries, and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Reflection formula ,General Mathematics ,010102 general mathematics ,Diagonal ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Mathematical Physics (math-ph) ,01 natural sciences ,Bialgebra ,Algebra ,Formalism (philosophy of mathematics) ,Mathematics::Category Theory ,Mathematics::Quantum Algebra ,0103 physical sciences ,Lie algebra ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,010307 mathematical physics ,Representation Theory (math.RT) ,0101 mathematics ,Mathematics - Representation Theory ,Mathematical Physics ,Mathematics - Abstract
We describe the diagonal reduction algebra D(gl n ) of the Lie algebra gl n in the R-matrix formalism. As a byproduct we present two families of central elements and the braided bialgebra structure of D(gl n ).
- Published
- 2015
- Full Text
- View/download PDF
25. On representations of Hecke algebras
- Author
-
A. P. Isaev and Oleg Ogievetsky
- Subjects
Double affine Hecke algebra ,Pure mathematics ,Representation theory of the symmetric group ,Symmetric group ,Mathematics::Quantum Algebra ,Irreducible representation ,General Physics and Astronomy ,Mathematics::Representation Theory ,Quantum ,Representation theory ,Hecke operator ,Mathematics - Abstract
In this report we review some facts about representation theory of Hecke algebras. For Hecke algebras we adapt the approach of A. Okounkov and A. Vershik [Selecta Math., New Ser., 2 (1996) 581], which was developed for the representation theory of symmetric groups. We justify explicit construction of idempotents for Hecke algebras in terms of Jucys-Murphy elements. Ocneanu's traces for these idempotents (which can be interpreted as q-dimensions of corresponding irreducible representations of quantum linear groups) are presented.
- Published
- 2005
- Full Text
- View/download PDF
26. BRST OPERATOR FOR QUANTUM LIE ALGEBRAS: EXPLICIT FORMULA
- Author
-
A. P. Isaev and Oleg Ogievetsky
- Subjects
Physics ,Nuclear and High Energy Physics ,Pure mathematics ,Adjoint representation of a Lie algebra ,Representation of a Lie group ,Quantum group ,Non-associative algebra ,Fundamental representation ,Astronomy and Astrophysics ,Killing form ,Affine Lie algebra ,Atomic and Molecular Physics, and Optics ,Lie conformal algebra - Abstract
We continue our study of quantum Lie algebras, an important class of quadratic algebras arising in the Woronowicz calculus on a quantum group. Quantum Lie algebras are generalizations of Lie (super)algebras. Many notions from the theory of Lie (super)algebras admit "quantum" analogues. In particular, there is a BRST operator Q(Q2=0) which generates the differential in the Woronowicz theory and gives information about (co)homologies of quantum Lie algebras. In our previous papers a recurrence relation for the operator Q for quantum Lie algebras was given. Here we solve this recurrence relation and obtain an explicit formula for the BRST operator.
- Published
- 2004
- Full Text
- View/download PDF
27. On inflation rules for Mosseri–Sadoc tilings
- Author
-
Oleg Ogievetsky and Z. Papadopolos
- Subjects
Combinatorics ,General Relativity and Quantum Cosmology ,Materials science ,Mechanics of Materials ,Mechanical Engineering ,Quasicrystal ,General Materials Science ,Invariant (mathematics) ,Condensed Matter Physics ,Algebraic method ,Eigenvalues and eigenvectors - Abstract
We give the inflation rules for the decorated Mosseri—Sadoc tiles in the projection class of tilings T ( MS ) . Dehn invariants related to the stone inflation of the Mosseri–Sadoc tiles provide eigenvectors of the inflation matrix with eigenvalues equal to τ =(1+√5)/2 and (− τ −1 ).
- Published
- 2000
- Full Text
- View/download PDF
28. Hecke algebraic properties of dynamicalR-matrices. Application to related quantum matrix algebras
- Author
-
Ivan Todorov, Pavel Pyatov, L. K. Hadjiivanov, Oleg Ogievetsky, A. P. Isaev, Centre de Physique Théorique - UMR 6207 (CPT), Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Ogievetsky, Oleg, and Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2
- Subjects
High Energy Physics - Theory ,Pure mathematics ,Hecke algebra ,FOS: Physical sciences ,Type (model theory) ,01 natural sciences ,High Energy Physics::Theory ,Matrix (mathematics) ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,Quantum Algebra (math.QA) ,0101 mathematics ,Quantum ,Mathematical Physics ,Mathematics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,010308 nuclear & particles physics ,Operator (physics) ,010102 general mathematics ,Matrix mechanics ,Zero (complex analysis) ,Statistical and Nonlinear Physics ,High Energy Physics - Theory (hep-th) ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th] ,Realization (systems) - Abstract
The quantum dynamical Yang-Baxter (or Gervais-Neveu-Felder) equation defines an R-matrix R(p), where $p$ stands for a set of mutually commuting variables. A family of SL(n)-type solutions of this equation provides a new realization of the Hecke algebra. We define quantum antisymmetrizers, introduce the notion of quantum determinant and compute the inverse quantum matrix for matrix algebras of the type R(p) a_1 a_2 = a_1 a_2 R. It is pointed out that such a quantum matrix algebra arises in the operator realization of the chiral zero modes of the WZNW model., 28 pages, LaTeX
- Published
- 1999
- Full Text
- View/download PDF
29. On quantum matrix algebras satisfying the Cayley - Hamilton - Newton identities
- Author
-
Oleg Ogievetsky, Pavel Pyatov, A. P. Isaev, Ogievetsky, Oleg, Centre de Physique Théorique - UMR 6207 (CPT), Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Class (set theory) ,Reflection formula ,Pure mathematics ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,General Physics and Astronomy ,01 natural sciences ,Identity (mathematics) ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,0103 physical sciences ,[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA] ,FOS: Mathematics ,Quantum Algebra (math.QA) ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,0101 mathematics ,Newton's identities ,Mathematical Physics ,Mathematics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA] ,010102 general mathematics ,Matrix mechanics ,Statistical and Nonlinear Physics ,Mathematics - Rings and Algebras ,Mathematical Physics (math-ph) ,[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph] ,Rings and Algebras (math.RA) ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,010307 mathematical physics - Abstract
The Cayley-Hamilton-Newton identities which generalize both the characteristic identity and the Newton relations have been recently obtained for the algebras of the RTT-type. We extend this result to a wider class of algebras M(R,F) defined by a pair of compatible solutions of the Yang-Baxter equation. This class includes the RTT-algebras as well as the Reflection equation algebras.
- Published
- 1999
- Full Text
- View/download PDF
30. [Untitled]
- Author
-
A. P. Isaev, Oleg Ogievetsky, and Pavel Pyatov
- Subjects
Reflection formula ,Pure mathematics ,Astrophysics::High Energy Astrophysical Phenomena ,010102 general mathematics ,Matrix mechanics ,General Physics and Astronomy ,01 natural sciences ,Identity (mathematics) ,Matrix (mathematics) ,Matrix algebra ,0103 physical sciences ,010307 mathematical physics ,0101 mathematics ,Newton's identities ,Mathematics - Abstract
The q-generalizations of the two fundamental statements of matrix algebra -- the Cayley-Hamilton theorem and the Newton relations -- to the cases of quantum matrix algebras of an "RTT-" and of a "Reflection equation" types have been obtained in [2]-[6]. We construct a family of matrix identities which we call Cayley-Hamilton-Newton identities and which underlie the characteristic identity as well as the Newton relations for the RTT- and Reflection equation algebras, in the sence that both the characteristic identity and the Newton relations are direct consequences of the Cayley-Hamilton-Newton identities.
- Published
- 1998
- Full Text
- View/download PDF
31. Fusion Procedure for Cyclotomic Hecke Algebras
- Author
-
Loïc Poulain d'Andecy and Oleg Ogievetsky
- Subjects
Pure mathematics ,Mathematics::Combinatorics ,Inverse ,Rational function ,Function (mathematics) ,Product (mathematics) ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Young tableau ,Pairwise comparison ,Geometry and Topology ,Representation Theory (math.RT) ,Element (category theory) ,Mathematics::Representation Theory ,Quantum ,Mathematical Physics ,Analysis ,Mathematics - Representation Theory ,Mathematics - Abstract
A complete system of primitive pairwise orthogonal idempotents for cyclotomic Hecke algebras is constructed by consecutive evaluations of a rational function in several variables on quantum contents of multi-tableaux. This function is a product of two terms, one of which depends only on the shape of the multi-tableau and is proportional to the inverse of the corresponding Schur element.
- Published
- 2014
32. Plane partitions and their pedestal polynomials
- Author
-
Oleg Ogievetsky, Senya Shlosman, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), CPT - E2 Géométrie, Physique et Symétries, Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and CPT - E5 Physique statistique et systèmes complexes
- Subjects
Polynomial ,Mathematics::Combinatorics ,Plane (geometry) ,General Mathematics ,Diagram ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Multivariate polynomials ,010103 numerical & computational mathematics ,01 natural sciences ,010101 applied mathematics ,Combinatorics ,Pedestal ,Linear extension ,TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,FOS: Mathematics ,Mathematics - Combinatorics ,Combinatorics (math.CO) ,0101 mathematics ,Partially ordered set ,Mathematics::Representation Theory ,Mathematics - Abstract
International audience; Given a partially ordered set S, we define, for a linear extension P of S, a multivariate polynomial, counting certain reverse partitions on S called P-pedestals. We establish a remarkable property of this polynomial: it does not depend on the choice of P. For S a Young diagram, we show that this polynomial generalizes the hook polynomial.
- Published
- 2014
- Full Text
- View/download PDF
33. Drinfeld-Jimbo quantum Lie algebra
- Author
-
Oleg Ogievetsky, Todor Popov, Centre de Physique Théorique - UMR 7332 (CPT), and Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Pure mathematics ,010308 nuclear & particles physics ,Quantum group ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,Type (model theory) ,01 natural sciences ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,0103 physical sciences ,Lie algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,010306 general physics ,Quantum ,ComputingMilieux_MISCELLANEOUS ,R-matrix - Abstract
Quantum Lie algebras related to multi-parametric Drinfeld-Jimbo $R$-matrices of type $GL(m|n)$ are classified., Comment: 9 pages
- Published
- 2012
- Full Text
- View/download PDF
34. Alternating subgroups of Coxeter groups and their spinor extensions
- Author
-
L. Poulain d'Andecy, Oleg Ogievetsky, Centre de Physique Théorique - UMR 6207 (CPT), Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Group Theory (math.GR) ,0102 computer and information sciences ,Point group ,01 natural sciences ,[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR] ,Combinatorics ,Coxeter graph ,Mathematics::Group Theory ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,FOS: Mathematics ,Mathematics::Metric Geometry ,0101 mathematics ,Longest element of a Coxeter group ,Mathematics::Representation Theory ,Mathematical Physics ,Mathematics ,Algebra and Number Theory ,Mathematics::Combinatorics ,Coxeter notation ,010102 general mathematics ,Coxeter group ,Mathematical Physics (math-ph) ,010201 computation theory & mathematics ,Artin group ,Cover (algebra) ,Coxeter element ,Mathematics - Group Theory - Abstract
Let G be a discrete Coxeter group, G + its alternating subgroup and G + the spinor cover of G + . A presentation of the groups G + and G + is proved for an arbitrary Coxeter system ( G , S ) ; the generators are related to edges of the Coxeter graph. Results of the Coxeter–Todd algorithm–with this presentation–for the chains of alternating groups of types A, B and D are given.
- Published
- 2011
- Full Text
- View/download PDF
35. A new fusion procedure for the Brauer algebra and evaluation homomorphisms
- Author
-
Alexander Molev, Oleg Ogievetsky, A. P. Isaev, School of Mathematics and statistics [Sydney], The University of Sydney, Centre de Physique Théorique - UMR 6207 (CPT), Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Reflection formula ,Pure mathematics ,General Mathematics ,Rational function ,01 natural sciences ,Symmetric group ,Mathematics - Quantum Algebra ,0103 physical sciences ,Lie algebra ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,FOS: Mathematics ,Mathematics - Combinatorics ,Quantum Algebra (math.QA) ,0101 mathematics ,Equivalence (formal languages) ,Representation Theory (math.RT) ,Brauer algebra ,Mathematics ,[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] ,010102 general mathematics ,Fusion procedure ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Homomorphism ,010307 mathematical physics ,Combinatorics (math.CO) ,Mathematics - Representation Theory - Abstract
We give a new fusion procedure for the Brauer algebra by showing that all primitive idempotents can be found by evaluating a rational function in several variables which has the form of a product of R-matrix type factors. In particular, this provides a new fusion procedure for the symmetric group involving an arbitrary parameter. The R-matrices are solutions of the Yang--Baxter equation associated with the classical Lie algebras g_N of types B, C and D. Moreover, we construct an evaluation homomorphism from a reflection equation algebra B(g_N) to U(g_N) and show that the fusion procedure provides an equivalence between natural tensor representations of B(g_N) with the corresponding evaluation modules., Comment: 31 pages
- Published
- 2011
- Full Text
- View/download PDF
36. Braidings of Tensor Spaces
- Author
-
Oleg Ogievetsky, Thomas Grapperon, Centre de Physique Théorique - UMR 6207 (CPT), Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010102 general mathematics ,Statistical and Nonlinear Physics ,16. Peace & justice ,Space (mathematics) ,01 natural sciences ,Combinatorics ,Nonlinear Sciences::Exactly Solvable and Integrable Systems ,Mathematics::Quantum Algebra ,0103 physical sciences ,Mathematics - Quantum Algebra ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,FOS: Mathematics ,Quantum Algebra (math.QA) ,010307 mathematical physics ,Tensor ,0101 mathematics ,16T25, 81R50, 17B37 ,Mathematical Physics ,Vector space ,Mathematics - Abstract
Let $V$ be a braided vector space, that is, a vector space together with a solution $\hat{R}\in {\text{End}}(V\otimes V)$ of the Yang--Baxter equation. Denote $T(V):=\bigoplus_k V^{\otimes k}$. We associate to $\hat{R}$ a solution $T(\hat{R})\in {\text{End}}(T(V)\otimes T(V))$ of the Yang--Baxter equation on the tensor space $T(V)$. The correspondence $\hat{R}\rightsquigarrow T(\hat{R})$ is functorial with respect to $V$., Comment: 10 pages, no figures
- Published
- 2010
- Full Text
- View/download PDF
37. q-Deformed Poincaré algebra
- Author
-
Julius Wess, Bruno Zumino, Oleg Ogievetsky, and W. B. Schmidke
- Subjects
Filtered algebra ,Algebra ,Symmetric algebra ,Quaternion algebra ,Mathematics::Quantum Algebra ,Differential graded algebra ,Division algebra ,Algebra representation ,Cellular algebra ,Statistical and Nonlinear Physics ,Representation theory of Hopf algebras ,Mathematical Physics ,Mathematics - Abstract
Theq-differential calculus for theq-Minkowski space is developed. The algebra of theq-derivatives with theq-Lorentz generators is found giving theq-deformation of the Poincare algebra. The reality structure of theq-Poincare algebra is given. The reality structure of theq-differentials is also found. The real Laplacian is constructed. Finally the comultiplication, counit and antipode for theq-Poincare algebra are obtained making it a Hopf algebra.
- Published
- 1992
- Full Text
- View/download PDF
38. Jordanian solutions of simplex equations
- Author
-
Oleg Ogievetsky, Holger Ewen, Centre de Physique Théorique - UMR 6207 (CPT), Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Ogievetsky, Oleg, and Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
High Energy Physics - Theory ,Physics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Simplex ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,Quantum group ,010102 general mathematics ,FOS: Physical sciences ,Statistical and Nonlinear Physics ,01 natural sciences ,Algebra ,High Energy Physics - Theory (hep-th) ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Quantum Algebra (math.QA) ,[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th] ,010307 mathematical physics ,0101 mathematics ,Construct (philosophy) ,Mathematical Physics - Abstract
We construct for all $N$ a solution of the Frenkel--Moore $N$--simplex equation which generalizes the $R$--matrix for the Jordanian quantum group., Comment: 6 pages
- Published
- 1992
- Full Text
- View/download PDF
39. Differential operators on quantum spaces for GL q (n) and SO q (n)
- Author
-
Oleg Ogievetsky
- Subjects
Algebra ,Pure mathematics ,Tensor product ,Mathematics::Commutative Algebra ,Quantum group ,Statistical and Nonlinear Physics ,Operator theory ,Quantum spacetime ,Differential operator ,Quantum ,Mathematical Physics ,Mathematics - Abstract
We prove that the rings of q-differential operators on quantum planes of the GL q (n) and SO q (n) types are isomorphic to the rings of classical differential operators. Also, we construct decompositions of the rings of q-differential operators into tensor products of the rings of q-differential operators with less variables.
- Published
- 1992
- Full Text
- View/download PDF
40. Une algèbre quadratique liée à la suite de Sturm
- Author
-
Vadim Schechtman, Oleg Ogievetsky, Centre de Physique Théorique - UMR 6207 (CPT), Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2, Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Infinite set ,symbols.namesake ,Polynomial ,Pure mathematics ,Quadratic equation ,Euler's formula ,symbols ,Cauchy distribution ,Algebra over a field ,Sturm's theorem ,Mathematics - Abstract
An algebra given by quadratic relations in a polynomial algebra on infinite set of generators is introduced. Using it, we prove some explicit formulas for the coefficients of the Sturm sequence of a polynomial. In the second part we discuss a numerical example of polynomials studied by Euler. There, the Hilbert matrices and the Cauchy determinants appear in the asymptotics of the Sturm sequence.
- Published
- 2009
- Full Text
- View/download PDF
41. Braids, Shuffles and Symmetrizers
- Author
-
A. P. Isaev, Oleg Ogievetsky, Centre de Physique Théorique - UMR 6207 (CPT), Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2
- Subjects
Statistics and Probability ,Pure mathematics ,Braid group ,General Physics and Astronomy ,01 natural sciences ,Operator (computer programming) ,Simple (abstract algebra) ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,Braid ,Quantum Algebra (math.QA) ,0101 mathematics ,Mathematics::Representation Theory ,Mathematical Physics ,Eigenvalues and eigenvectors ,Associative property ,Mathematics ,010308 nuclear & particles physics ,010102 general mathematics ,Multiplicative function ,Statistical and Nonlinear Physics ,Modeling and Simulation ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,Multiplication - Abstract
Multiplicative analogues of the shuffle elements of the braid group rings are introduced; in local representations they give rise to certain graded associative algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-symmetrizers have simple expressions in terms of the multiplicative shuffles. The (anti)-symmetrizers can be expressed in terms of the highest multiplicative 1-shuffles (for the Hecke and BMW algebras) and in terms of the highest additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities of eigenvalues of the operators of the multiplication by the multiplicative and additive 1-shuffles are examined., 18 pages
- Published
- 2009
- Full Text
- View/download PDF
42. Quantum matrices in two dimensions
- Author
-
Holger Ewen, Julius Wess, and Oleg Ogievetsky
- Subjects
Pure mathematics ,Quantum t-design ,Quantum state ,Quantum group ,Quantum mechanics ,Lie algebra ,Matrix mechanics ,Statistical and Nonlinear Physics ,Quantum spacetime ,Quantum ,Mathematical Physics ,Mathematics ,Vector space - Abstract
Quantum matrices in two dimensions, admitting left and right quantum spaces, are classified: they fall into two families, the 2-parametric family GLp,q(2) and a 1-parametric family GL infα sup J(2). Phenomena previously found for GLp,q(2) hold in this general situation: (a) powers of quantum matrices are again quantum and (b) entries of the logarithm of a two-dimensional quantum matrix form a Lie algebra.
- Published
- 1991
- Full Text
- View/download PDF
43. Relations betweenGL p,q (2)'s
- Author
-
Oleg Ogievetsky and Julius Wess
- Subjects
Pure mathematics ,Physics and Astronomy (miscellaneous) ,Higher-dimensional gamma matrices ,Product (mathematics) ,Matrix mechanics ,Engineering (miscellaneous) ,Quantum ,Exponential form ,Mathematics - Abstract
Quantum groups have some peculiar properties is two dimensions. We formulate conditions sufficient for the product of two quantum matrices (with not necessarily the same values of deformation parameters) to be a quantum matrix again. This is then used to study the powers and exponential form of matrices fromGLp,q(2), generalising this way properties ofGLq(2)-matrices.
- Published
- 1991
- Full Text
- View/download PDF
44. BRST charges for finite nonlinear algebras
- Author
-
S. O. Krivonos, Oleg Ogievetsky, A. P. Isaev, Centre de Physique Théorique - UMR 6207 (CPT), Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2
- Subjects
Nuclear and High Energy Physics ,Pure mathematics ,Class (set theory) ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,17A45 ,70H45 ,81R50 ,17B56 ,01 natural sciences ,Quadratic algebra ,High Energy Physics::Theory ,Quadratic equation ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,Lie algebra ,Radiology, Nuclear Medicine and imaging ,010306 general physics ,Quantum ,Mathematical Physics ,Mathematics ,Radiation ,010308 nuclear & particles physics ,Charge (physics) ,Mathematical Physics (math-ph) ,Atomic and Molecular Physics, and Optics ,BRST quantization ,Nonlinear system - Abstract
Some ingredients of the BRST construction for quantum Lie algebras are applied to a wider class of quadratic algebras of constraints. We build the BRST charge for a quantum Lie algebra with three generators and ghost-anti-ghosts commuting with constraints. We consider a one-parametric family of quadratic algebras with three generators and show that the BRST charge acquires the conventional form after a redefinition of ghosts. The modified ghosts form a quadratic algebra. The family possesses a non-linear involution, which implies the existence of two independent BRST charges for each algebra in the family. These BRST charges anticommute and form a double BRST complex., 10 pages
- Published
- 2008
- Full Text
- View/download PDF
45. Mickelsson algebras and Zhelobenko operators
- Author
-
Oleg Ogievetsky, S. Khoroshkin, Centre de Physique Théorique - UMR 6207 (CPT), Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Bernardo, Elizabeth, and Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2
- Subjects
High Energy Physics - Theory ,Dynamical Weyl group ,Braid group ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Universal enveloping algebra ,Contragredient Lie algebras of finite growth ,01 natural sciences ,symbols.namesake ,Mathematics::Group Theory ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Mathematics::Quantum Algebra ,0103 physical sciences ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Braid group actions ,Mickelsson algebras ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,0101 mathematics ,Algebra over a field ,Mathematical Physics ,Mathematics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Extremal projector ,Weyl group ,Algebra and Number Theory ,Quantum group ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,Quantized universal enveloping algebras ,010102 general mathematics ,Mathematical Physics (math-ph) ,[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph] ,Automorphism ,Zhelobenko cocycles ,Action (physics) ,Algebra ,High Energy Physics - Theory (hep-th) ,symbols ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th] ,010307 mathematical physics ,Generalized Kac–Moody algebra - Abstract
We construct a family of automorphisms of Mickelsson algebra, satisfying braid group relations. The construction uses ‘Zhelobenko cocycle’ and includes the dynamical Weyl group action as a particular case.
- Published
- 2006
46. Baxterized Solutions of Reflection Equation and Integrable Chain Models
- Author
-
Oleg Ogievetsky, A. P. Isaev, Bernardo, Elizabeth, Centre de Physique Théorique - UMR 6207 (CPT), Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), and Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
High Energy Physics - Theory ,Nuclear and High Energy Physics ,Reflection formula ,Integrable system ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,01 natural sciences ,Spin chain ,[PHYS.COND.CM-SM] Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,Chain (algebraic topology) ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Mathematics::Quantum Algebra ,0103 physical sciences ,Mathematics - Quantum Algebra ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Boundary value problem ,0101 mathematics ,[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech] ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,Mathematics::Representation Theory ,Mathematical Physics ,Condensed Matter - Statistical Mechanics ,Mathematical physics ,Physics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,Statistical Mechanics (cond-mat.stat-mech) ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,010102 general mathematics ,Mathematical Physics (math-ph) ,[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph] ,Mathematics::Geometric Topology ,Nonlinear Sciences::Exactly Solvable and Integrable Systems ,Reflection (mathematics) ,High Energy Physics - Theory (hep-th) ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th] ,010307 mathematical physics ,Affine transformation - Abstract
Non-polynomial Baxterized solutions of reflection equations associated with affine Hecke and affine Birman-Murakami-Wenzl algebras are found. Relations to integrable spin chain models with nontrivial boundary conditions are discussed., Comment: LaTeX, 18 pages, typos fixed, journal-ref added
- Published
- 2005
- Full Text
- View/download PDF
47. Quantum matrix algebra for the SU(n) WZNW model
- Author
-
Paolo Furlan, Ivan Todorov, L. K. Hadjiivanov, A. P. Isaev, Pavel Pyatov, Oleg Ogievetsky, Centre de Physique Théorique - UMR 6207 (CPT), Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Ogievetsky, Oleg, Furlan, Paolo, L. K., Hadjiivanov, A. P., Isaev, O. V., Ogievetsky, P. N., Pyatov, I. T., Todorov, and Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
High Energy Physics - Theory ,Root of unity ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,General Physics and Astronomy ,FOS: Physical sciences ,Universal enveloping algebra ,Quotient algebra ,01 natural sciences ,Fock space ,Matrix (mathematics) ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,Mathematics::Quantum Algebra ,Mathematics - Quantum Algebra ,0103 physical sciences ,FOS: Mathematics ,Quantum Algebra (math.QA) ,Ideal (ring theory) ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,0101 mathematics ,Mathematical Physics ,Physics ,[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA] ,010308 nuclear & particles physics ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,010102 general mathematics ,Zero (complex analysis) ,Statistical and Nonlinear Physics ,Mathematical Physics (math-ph) ,[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph] ,Algebra ,High Energy Physics - Theory (hep-th) ,Irreducible representation ,[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA] ,[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th] - Abstract
The zero modes of the chiral SU(n) WZNW model give rise to an intertwining quantum matrix algebra A generated by an n x n matrix a=(a^i_\alpha) (with noncommuting entries) and by rational functions of n commuting elements q^{p_i}. We study a generalization of the Fock space (F) representation of A for generic q (q not a root of unity) and demonstrate that it gives rise to a model of the quantum universal enveloping algebra U_q(sl_n), each irreducible representation entering F with multiplicity 1. For an integer level k the complex parameter q is an even root of unity, q^h=-1 (h=k+n) and the algebra A has an ideal I_h such that the factor algebra A_h = A/I_h is finite dimensional., Comment: 48 pages, LaTeX, uses amsfonts; final version to appear in J. Phys. A
- Published
- 2000
- Full Text
- View/download PDF
48. On Quasiperiodic Space Tilings, Inflation and Dehn Invariants
- Author
-
Oleg Ogievetsky, Z. Papadopolos, Centre de Physique Théorique - UMR 6207 (CPT), Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2, Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Ogievetsky, Oleg, and Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Inflation ,Class (set theory) ,media_common.quotation_subject ,[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] ,FOS: Physical sciences ,Space (mathematics) ,01 natural sciences ,Theoretical Computer Science ,Combinatorics ,Matrix (mathematics) ,General Relativity and Quantum Cosmology ,Projection (mathematics) ,[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] ,0103 physical sciences ,Discrete Mathematics and Combinatorics ,AMS: 52B45, 52C22, 05B45, 51M20 ,0101 mathematics ,[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph] ,010306 general physics ,Eigenvalues and eigenvectors ,Mathematical Physics ,media_common ,Mathematics ,010102 general mathematics ,Mathematical Physics (math-ph) ,[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph] ,Mathematics::Geometric Topology ,Computational Theory and Mathematics ,Quasiperiodic function ,Tetrahedron ,Geometry and Topology - Abstract
We introduce Dehn invariants as a useful tool in the study of the inflation of quasiperiodic space tilings. The tilings by ``golden tetrahedra'' are considered. We discuss how the Dehn invariants can be applied to the study of inflation properties of the six golden tetrahedra. We also use geometry of the faces of the golden tetrahedra to analyze their inflation properties. We give the inflation rules for decorated Mosseri-Sadoc tiles in the projection class of tilings ${\cal T}^{(MS)}$. The Dehn invariants of the Mosseri-Sadoc tiles provide two eigenvectors of the inflation matrix with eigenvalues equal to $\tau = \frac{1+\sqrt{5}}{2}$ and $-\frac{1}{\tau}$, and allow to reconstruct the inflation matrix uniquely., Comment: LaTeX file, 25 pages + 9 figures (Fig1.gif, Fig2.gif... Fig9.gif); hard copies with all figures are available from the authors
- Published
- 1999
49. Characteristic polynomials for quantum matrices
- Author
-
Oleg Ogievetsky, Pavel Pyatov, A. P. Isaev, and Pavel Saponov
- Subjects
Discrete mathematics ,Matrix (mathematics) ,Quantum t-design ,Mathematics::Quantum Algebra ,Computer Science::Multimedia ,Orthogonal polynomials ,Computer Science::Networking and Internet Architecture ,Quantum operation ,Quantum algorithm ,Quasitriangular Hopf algebra ,Polynomial matrix ,Characteristic polynomial ,Mathematics - Abstract
A quantum version of the Cayley-Hamilton theorem is found for the matrix T of the generators of the RTT-algebra. In the quasitriangular case, a connection between the characteristic identities in the RTT and RE-algebras is established.
- Published
- 1999
- Full Text
- View/download PDF
50. Quantized Minkowski Space
- Author
-
Bruno Zumino, W. B. Schmidke, Julius Wess, and Oleg Ogievetsky
- Subjects
Pure mathematics ,Morphism ,Quantum group ,Group (mathematics) ,Algebraic structure ,Minkowski space ,Symmetry group ,Quantum spacetime ,Hopf algebra ,Mathematics - Abstract
The concept of symmetry groups has a mathematically well defined generalization in the framework of Hopf algebras. Such generalizations have become known as quantum groups- these are Hopf algebras with an algebraic structure which depends on one or more parameters q (q ∊ C,q ≠ 0), such that for a particular value of these parameters, say q = 1, the quantum group coincides with the group. In this sense a quantum group is a deformation of a group, q being a deformation parameter. With the concept of a group goes the concept of representations and representation spaces. These representation spaces find a natural generalization as well, called quantum spaces. These are algebraic structures that depend on the deformation parameter q and for q = 1 coincide with the linear space in which the corresponding group is represented. For q ≠ 1, the quantum group acts as a linear morphism of the algebraic structure of the quantum space. The algebraic structure of the group and the quantum space are closely related.
- Published
- 1993
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.