132 results on '"Takéo Takahashi"'
Search Results
2. Control Problems for the Navier-Stokes System with Nonlocal Spatial Terms.
- Author
-
Nicolás Carreño and Takéo Takahashi
- Published
- 2024
- Full Text
- View/download PDF
3. Input to state stability of the Kermack-Mckendrick age structured epidemic model.
- Author
-
Jorge San Martín, Takéo Takahashi, and Marius Tucsnak
- Published
- 2021
- Full Text
- View/download PDF
4. Approximate controllability and stabilizability of a linearized system for the interaction between a viscoelastic fluid and a rigid body.
- Author
-
Debanjana Mitra, Arnab Roy 0009, and Takéo Takahashi
- Published
- 2021
- Full Text
- View/download PDF
5. On the null-controllability of a radiative heat transfer system.
- Author
-
Mohamed Ghattassi and Takéo Takahashi
- Published
- 2021
- Full Text
- View/download PDF
6. Controllability of the Stefan problem by the flatness approach.
- Author
-
Blaise Colle, Jérôme Lohéac, and Takéo Takahashi
- Published
- 2023
- Full Text
- View/download PDF
7. Gevrey Regularity for a System Coupling the Navier-Stokes System with a Beam Equation.
- Author
-
Mehdi Badra and Takéo Takahashi
- Published
- 2019
- Full Text
- View/download PDF
8. Analysis of a Simplified Model of Rigid Structure Floating in a Viscous Fluid.
- Author
-
Debayan Maity, Jorge San Martín, Takéo Takahashi, and Marius Tucsnak
- Published
- 2019
- Full Text
- View/download PDF
9. FLATNESS APPROACH FOR THE BOUNDARY CONTROLLABILITY OF A SYSTEM OF HEAT EQUATIONS.
- Author
-
COLLE, BLAISE, LOHÉAC, JÉRÔME, and TAKÉO TAKAHASHI
- Subjects
HEATING ,DIFFUSION coefficients ,HEAT equation ,CARLEMAN theorem - Abstract
We study the boundary controllability of 2×2 system of heat equations by using a flatness approach. According to the relation between the diffusion coefficients of the heat equation, it is known that the system can be neither null-controllable nor null-controllable for any T>T
0 , where T0 ∈[0,∞]. Here we recover this result in the case that T0 ∈[0,∞) by using the flatness method, and we obtain an explicit formula for the control and for the corresponding solutions. In particular, the state and the control have Gevrey regularity in time and in space. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
10. Fluid-Rigid Structure Interaction System with Coulomb's Law.
- Author
-
Loredana Balilescu, Jorge San Martín, and Takéo Takahashi
- Published
- 2017
- Full Text
- View/download PDF
11. Global Stabilization of a Rigid Body Moving in a Compressible Viscous Fluid
- Author
-
Debayan Maity, Arnab Roy, and Takéo Takahashi
- Published
- 2023
- Full Text
- View/download PDF
12. Remark on the global null controllability for a viscous Burgers-particle system with particle supported control.
- Author
-
Mythily Ramaswamy, Arnab Roy 0009, and Takéo Takahashi
- Published
- 2020
- Full Text
- View/download PDF
13. Numerical observers with vanishing viscosity for the 1d wave equation.
- Author
-
Galina C. García and Takéo Takahashi
- Published
- 2014
- Full Text
- View/download PDF
14. Well-Posedness for a One-Dimensional Fluid-Particle Interaction Model.
- Author
-
Boris P. Andreianov, Frédéric Lagoutière, Nicolas Seguin, and Takéo Takahashi
- Published
- 2014
- Full Text
- View/download PDF
15. Existence of strong solutions for a system of interaction between a compressible viscous fluid and a wave equation*
- Author
-
Arnab Roy, Takéo Takahashi, and Debayan Maity
- Subjects
Cuboid ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,General Physics and Astronomy ,Statistical and Nonlinear Physics ,Wave equation ,01 natural sciences ,Physics::Fluid Dynamics ,010101 applied mathematics ,Nonlinear system ,Barotropic fluid ,Fluid–structure interaction ,Compressibility ,0101 mathematics ,Convection–diffusion equation ,Displacement (fluid) ,Mathematical Physics ,Mathematics - Abstract
In this article, we consider a fluid-structure interaction system where the fluid is viscous and compressible and where the structure is a part of the boundary of the fluid domain and is deformable. The fluid is governed by the barotropic compressible Navier-Stokes system whereas the structure displacement is described by a wave equation. We show that the corresponding coupled system admits a unique strong solution for an initial fluid density and an initial fluid velocity in $H^3$ and for an initial deformation and an initial deformation velocity in $H^4$ and $H^3$ respectively. The reference configuration for the fluid domain is a rectangular cuboid with the elastic structure being the top face. We use a modified Lagrangian change of variables to transform the moving fluid domain into the rectangular cuboid and then analyze the corresponding linear system coupling a transport equation (for the density), a heat-type equation, and a wave equation. The corresponding results for this linear system and estimations of the coefficients coming from the change of variables allow us to perform a fixed point argument and to prove the existence and uniqueness of strong solutions for the nonlinear system, locally in time.
- Published
- 2021
- Full Text
- View/download PDF
16. Maximal regularity for the Stokes system coupled with a wave equation: application to the system of interaction between a viscous incompressible fluid and an elastic wall
- Author
-
Mehdi Badra and Takéo Takahashi
- Subjects
Mathematics (miscellaneous) - Published
- 2022
- Full Text
- View/download PDF
17. Stabilization of Parabolic Nonlinear Systems with Finite Dimensional Feedback or Dynamical Controllers: Application to the Navier-Stokes System.
- Author
-
Mehdi Badra and Takéo Takahashi
- Published
- 2011
- Full Text
- View/download PDF
18. Small solids in an inviscid fluid.
- Author
-
Boris P. Andreianov, Frédéric Lagoutière, Nicolas Seguin, and Takéo Takahashi
- Published
- 2010
- Full Text
- View/download PDF
19. Solving Inverse Source Problems Using Observability. Applications to the Euler--Bernoulli Plate Equation.
- Author
-
Carlos J. S. Alves, Ana Leonor Silvestre, Takéo Takahashi, and Marius Tucsnak
- Published
- 2009
- Full Text
- View/download PDF
20. Collisions in Three-Dimensional Fluid Structure Interaction Problems.
- Author
-
Matthieu Hillairet and Takéo Takahashi
- Published
- 2009
- Full Text
- View/download PDF
21. Stabilization of a rigid body moving in a compressible viscous fluid
- Author
-
Takéo Takahashi, Arnab Roy, Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), and Takahashi, Takéo
- Subjects
Viscous liquid ,01 natural sciences ,Damper ,Mathematics - Analysis of PDEs ,Mathematics (miscellaneous) ,Position (vector) ,Fluid-structure interaction ,Fluid–structure interaction ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Ball (mathematics) ,[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Mathematics ,010102 general mathematics ,Mathematical analysis ,[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC] ,Rigid body ,MSC : 35Q35, 35D30, 35D35, 35R37, 76N10, 93D15, 93D20 ,compressible Navier-Stokes system ,stabilization ,010101 applied mathematics ,Spring (device) ,Compressibility ,global solutions ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Analysis of PDEs (math.AP) - Abstract
We consider the stabilizability of a fluid-structure interaction system where the fluid is viscous and compressible and the structure is a rigid ball. The feedback control of the system acts on the ball and corresponds to a force that would be produced by a spring and a damper connecting the center of the ball to a fixed point $$h_1$$ . We prove the global-in-time existence of strong solutions for the corresponding system under a smallness condition on the initial velocities and on the distance between the initial position of the center of the ball and $$h_1$$ . Then, we show with our feedback law, that the fluid and the structure velocities go to 0 and that the center of the ball goes to $$h_1$$ as $$t\rightarrow \infty $$ .
- Published
- 2020
- Full Text
- View/download PDF
22. Convergence results for a semilinear problem and for a Stokes problem in a periodic geometry.
- Author
-
Séverine Baillet, Antoine Henrot, and Takéo Takahashi
- Published
- 2006
23. Convergence of the Lagrange-Galerkin Method for the Equations Modelling the Motion of a Fluid-Rigid System.
- Author
-
Jorge San Martín, Jean-François Scheid, Takéo Takahashi, and Marius Tucsnak
- Published
- 2005
- Full Text
- View/download PDF
24. Global Stabilization of a rigid body moving in a compressible viscous fluid
- Author
-
Debayan Maity, Arnab Roy, and Takéo Takahashi
- Published
- 2022
- Full Text
- View/download PDF
25. Gevrey regularity for a system coupling the Navier-Stokes system with a beam : the non-flat case
- Author
-
Mehdi Badra, Takéo Takahashi, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics::Fluid Dynamics ,Navier-Stokes system ,Mathematics - Analysis of PDEs ,Algebra and Number Theory ,Gevrey class semigroups ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Geometry and Topology ,2010 Mathematics Subject Classification : 76D03, 76D05, 35Q74, 76D27 ,Analysis ,Analysis of PDEs (math.AP) ,fluid-structure - Abstract
International audience; We consider a bi-dimensional viscous incompressible fluid in interaction with a beam located at its boundary. We show the existence of strong solutions for this fluid-structure interaction system, extending a previous result [3] where we supposed that the initial deformation of the beam was small. The main point of the proof consists in the study of the linearized system and in particular in proving that the corresponding semigroup is of Gevrey class.
- Published
- 2022
- Full Text
- View/download PDF
26. Controllability Results for Cascade Systems of m Coupled N-Dimensional Stokes and Navier-Stokes Systems by N – 1 Scalar Controls
- Author
-
Takéo Takahashi, Luz de Teresa, and Yingying Wu-Zhang
- Subjects
Computational Mathematics ,Control and Optimization ,Control and Systems Engineering - Abstract
In this paper we deal with the controllability properties of a system of m coupled Stokes systems or m coupled Navier-Stokes systems. We show the null-controllability of such systems in the case where the coupling is in a cascade form and when the control acts only on one of the systems. Moreover, we impose that this control has a vanishing component so that we control a m × N state (corresponding to the velocities of the fluids) by N — 1 distributed scalar controls. The proof of the controllability of the coupled Stokes systems is based on a Carleman estimate for the adjoint system. The local null-controllability of the coupled Navier-Stokes systems is then obtained by means of the source term method and a Banach fixed point.
- Published
- 2023
- Full Text
- View/download PDF
27. Existence and uniqueness of strong solutions for the system of interaction between a compressible Navier-Stokes-Fourier fluid and a damped plate equation
- Author
-
Takéo Takahashi, Debayan Maity, Center for Applicable Mathematics [Bangalore] (TIFR-CAM), Tata Institute for Fundamental Research (TIFR), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Debayan Maity was partially supported by INSPIRE faculty fellowship (IFA18-MA128) and by Department of Atomic Energy, Government of India, under project no. 12-R & D-TFR-5.01-0520. Takéo Takahashi was partially supported by the ANR research project IFSMACS (ANR-15-CE40-0010)., and ANR-15-CE40-0010,IFSMACS,Interaction Fluide-Structure : Modélisation, analyse, contrôle et simulation(2015)
- Subjects
Change of variables ,fluid-structure interaction ,R-sectorial operators ,Fixed point ,01 natural sciences ,Physics::Fluid Dynamics ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Uniqueness ,0101 mathematics ,Physics ,Small data ,Applied Mathematics ,Operator (physics) ,010102 general mathematics ,Mathematical analysis ,Linear system ,maximal regularity ,General Engineering ,General Medicine ,compressible NavierStokesFourier system ,010101 applied mathematics ,Computational Mathematics ,Compressibility ,strong solutions ,General Economics, Econometrics and Finance ,Displacement (fluid) ,Analysis ,Analysis of PDEs (math.AP) - Abstract
The article is devoted to the mathematical analysis of a fluid–structure interaction system where the fluid is compressible and heat conducting and where the structure is deformable and located on a part of the boundary of the fluid domain. The fluid motion is modeled by the compressible Navier–Stokes–Fourier system and the structure displacement is described by a structurally damped plate equation. Our main results are the existence of strong solutions in an L p − L q setting for small time or for small data. Through a change of variables and a fixed point argument, the proof of the main results is mainly based on the maximal regularity property of the corresponding linear systems. For small time existence, this property is obtained by decoupling the linear system into several standard linear systems whereas for global existence and for small data, the maximal regularity property is proved by showing that the corresponding linear coupled fluid–structure operator is R -sectorial.
- Published
- 2021
- Full Text
- View/download PDF
28. Remark on the global null controllability for a viscous Burgers-particle system with particle supported control
- Author
-
Arnab Roy, Mythily Ramaswamy, Takéo Takahashi, Chennai Mathematical Institute [Inde], Institute of Mathematics of the Czech Academy of Science (IM / CAS), Czech Academy of Sciences [Prague] (CAS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Arnab Roy and Takéo Takahashi were partially supported by the ANR research project IFSMACS (ANR-15-CE40-0010). The three authors were partially supported by the IFCAM project 'Analysis, Control and Homogenization of Complex Systems'., and ANR-15-CE40-0010,IFSMACS,Interaction Fluide-Structure : Modélisation, analyse, contrôle et simulation(2015)
- Subjects
0209 industrial biotechnology ,Work (thermodynamics) ,Point particle ,02 engineering and technology ,01 natural sciences ,Physics::Fluid Dynamics ,Mathematics - Analysis of PDEs ,020901 industrial engineering & automation ,Position (vector) ,Fluid-structure interaction ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Mathematics - Optimization and Control ,Mathematics ,Particle system ,Applied Mathematics ,010102 general mathematics ,Null (mathematics) ,Mathematical analysis ,AMS subject classifications. 35Q35, 35D30, 35D35, 35R37, 35L10, 93D15, 93D20 ,global controllability ,Burgers' equation ,Controllability ,viscous Burgers equation ,Optimization and Control (math.OC) ,Particle ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Analysis of PDEs (math.AP) - Abstract
International audience; This paper is devoted to study the controllability of a one-dimensional fluid-particle interaction model where the fluid follows the viscous Burgers equation and the point mass obeys Newton's second law. We prove the null controllability for the velocity of the fluid and the particle and an approximate controllability for the position of the particle with a control variable acting only on the particle. One of the novelties of our work is the fact that we achieve this controllability result in a uniform time for all initial data and without any smallness assumptions on the initial data.
- Published
- 2020
- Full Text
- View/download PDF
29. $$L^{p}$$ Theory for the Interaction Between the Incompressible Navier–Stokes System and a Damped Plate
- Author
-
Takéo Takahashi, Debayan Maity, Center for Applicable Mathematics [Bangalore] (TIFR-CAM), Tata Institute for Fundamental Research (TIFR), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Incompressible Navier-Stokes System ,Physics ,Change of variables ,AMS subject classifications. 35Q35, 76D03, 76D05, 74F1 ,Applied Mathematics ,Operator (physics) ,010102 general mathematics ,Linear system ,Mathematical analysis ,Boundary (topology) ,Fixed point ,Condensed Matter Physics ,01 natural sciences ,Action (physics) ,Physics::Fluid Dynamics ,010101 applied mathematics ,Computational Mathematics ,Fluid-structure interaction ,Fluid–structure interaction ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Maximal Lp regularity ,Uniqueness ,0101 mathematics ,Strong solutions ,Mathematical Physics - Abstract
International audience; We consider a viscous incompressible fluid governed by the Navier-Stokes system written in a domain where a part of the boundary is moving as a damped beam under the action of the fluid. We prove the existence and uniqueness of global strong solutions for the corresponding fluid-structure interaction system in an Lp-Lq setting. The main point in the proof consists in the study of a linear parabolic system coupling the non stationary Stokes system and a damped beam. We show that this linear system possesses the maximal regularity property by proving the R-sectoriality of the corresponding operator. The proof of the main results is then obtained by an appropriate change of variables to handle the free boundary and a fixed point argument to treat the nonlinearities of this system.
- Published
- 2021
- Full Text
- View/download PDF
30. Well-posedness for the coupling between a viscous incompressible fluid and an elastic structure
- Author
-
Takéo Takahashi, Muriel Boulakia, Sergio Guerrero, Sorbonne Université (SU), Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), COmputational Mathematics for bio-MEDIcal Applications (COMMEDIA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Coupling ,Elastic structure ,Applied Mathematics ,010102 general mathematics ,Linear elasticity ,Mathematical analysis ,2010 Mathematics Subject Classification. 76D03, 76D05, 35Q74, 76D27 ,Structure (category theory) ,General Physics and Astronomy ,Statistical and Nonlinear Physics ,Viscous incompressible fluid ,01 natural sciences ,Domain (mathematical analysis) ,Navier-Stokes system ,Physics::Fluid Dynamics ,010101 applied mathematics ,Bounded function ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Uniqueness ,0101 mathematics ,Fluid-structure ,Displacement (fluid) ,Mathematical Physics ,Mathematics - Abstract
International audience; In this paper, we consider a system modeling the interaction between a viscous incompressible fluid and an elastic structure. The fluid motion is represented by the classical Navier-Stokes equations while the elastic displacement is described by the linearized elasticity equation. The elastic structure is immersed in the fluid and the whole system is confined into a general bounded smooth domain of R3. Our main result is the local in time existence and uniqueness of a strong solution of the corresponding system.
- Published
- 2019
- Full Text
- View/download PDF
31. Controllability of a fuid-structure interaction system coupling the Navier--Stokes system and a damped beam equation.
- Author
-
Buffe, Rémi and Takéo Takahashi
- Subjects
- *
CONTROLLABILITY in systems engineering , *FLUID-structure interaction , *HEAT equation , *NONLINEAR systems , *EQUATIONS - Abstract
We show the local null-controllability of a fluid-structure interaction system coupling a viscous incompressible fluid with a damped beam located on a part of its boundary. The controls act on arbitrary small parts of the fluid domain and of the beam domain. In order to show the result, we first use a change of variables and a linearization to reduce the problem to the null-controllability of a Stokes-beam system in a cylindrical domain. We obtain this property by combining Carleman inequalities for the heat equation, for the damped beam equation and for the Laplace equation with high-frequency estimates. Then, the result on the nonlinear system is obtained by a fixed-point argument. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
32. SWITCHING CONTROLS FOR PARABOLIC SYSTEMS.
- Author
-
Badra, Mehdi and Takéo Takahashi
- Subjects
HEAT equation ,CARLEMAN theorem - Abstract
We consider the controllability of an abstract parabolic system by using switching controls. More precisely, we show that, under general hypotheses, if a parabolic system is null-controllable for any positive time with N controls, then it is also null-controllable with the property that at each time, only one of these controls is active. The main difference with previous results in the literature is that we can handle the case where the main operator of the system is not self-adjoint. We give several examples to illustrate our result: coupled heat equations with terms of orders 0 and 1, the Oseen system or the Boussinesq system. [ABSTRACT FROM AUTHOR]
- Published
- 2023
33. Boundary local null-controllability of the Kuramoto-Sivashinsky equation.
- Author
-
Takéo Takahashi
- Published
- 2017
- Full Text
- View/download PDF
34. Controllability to trajectories of a Ladyzhenskaya model for a viscous incompressible fluid
- Author
-
Takéo Takahashi, Sergio Guerrero, Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and ANR-20-CE40-0009,TRECOS,Nouvelles directions en contrôle et stabilisation: Contraintes et termes non-locaux(2020)
- Subjects
General Mathematics ,010102 general mathematics ,Mathematics::Analysis of PDEs ,controllability to trajectories ,2010 Mathematics Subject Classification : 76D05, 93C20, 93B05, 93B07 ,Mechanics ,Viscous incompressible fluid ,Carleman estimates ,01 natural sciences ,nonlocal spatial terms ,Controllability ,Physics::Fluid Dynamics ,viscous incompressible fluid ,0103 physical sciences ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,010307 mathematical physics ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,0101 mathematics ,Mathematics - Abstract
International audience; We consider the controllability of a viscous incompressible fluid modeled by the Navier-Stokes systemwith a nonlinear viscosity. To prove the controllability to trajectories, we linearize around a trajectory andthe corresponding linear system includes a nonlocal spatial term. Our main result is a Carleman estimatefor the adjoint of this linear system. This estimate yields in a standard way the null controllability of thelinear system and the local controllability to trajectories. Our method to obtain the Carleman estimate iscompletely general and can be adapted to other parabolic systems when a Carleman estimate is available.
- Published
- 2021
35. Existence of contacts for the motion of a rigid body into a viscous incompressible fluid with the Tresca boundary conditions
- Author
-
Matthieu Hillairet, Takéo Takahashi, Institut Montpelliérain Alexander Grothendieck (IMAG), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Gravity (chemistry) ,Cauchy stress tensor ,General Mathematics ,2010 Mathematics Subject Classification : 74F10, 35R35, 35Q30, 76D05 ,010102 general mathematics ,Boundary (topology) ,Newton's laws of motion ,Mechanics ,Slip (materials science) ,Rigid body ,01 natural sciences ,Domain (mathematical analysis) ,fluid-structure ,010101 applied mathematics ,Physics::Fluid Dynamics ,Navier-Stokes system ,Mathematics - Analysis of PDEs ,Tresca's boundary conditions ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Boundary value problem ,0101 mathematics ,Analysis of PDEs (math.AP) - Abstract
International audience; We consider a fluid-structure interaction system composed by a rigid ball immersed into a viscous in-compressible fluid. The motion of the structure satisfies the Newton laws and the fluid equations are the standard Navier-Stokes system. At the boundary of the fluid domain, we use the Tresca boundary conditions, that permit the fluid to slip tangentially on the boundary under some conditions on the stress tensor. More precisely, there is a threshold determining if the fluid can slip or not and there is a friction force acting on the part where the fluid can slip. Our main result is the existence of contact in finite time between the ball and the exterior boundary of the fluid for this system in the bidimensional case and in presence of gravity.
- Published
- 2021
- Full Text
- View/download PDF
36. Approximate controllability and stabilizability of a linearized system for the interaction between a viscoelastic fluid and a rigid body
- Author
-
Arnab Roy, Takéo Takahashi, Debanjana Mitra, Department of Mathematics, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India, Institute of Mathematics of the Czech Academy of Science (IM / CAS), Czech Academy of Sciences [Prague] (CAS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
0209 industrial biotechnology ,Control and Optimization ,Structure (category theory) ,02 engineering and technology ,93D15 ,01 natural sciences ,controllability ,Domain (mathematical analysis) ,Viscoelasticity ,finite dimensional controls 2010 Mathematics Subject Classification 76A10 ,020901 industrial engineering & automation ,Position (vector) ,0101 mathematics ,[MATH]Mathematics [math] ,Mathematics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Order (ring theory) ,stabilizability ,Rigid body ,Exponential function ,viscoelastic fluids ,Controllability ,74F10 ,Control and Systems Engineering ,Fluid-structure interaction systems ,93B52 ,Signal Processing ,35Q35 - Abstract
International audience; We study control properties of a linearized fluid-structure interaction system, where the structure is a rigid body and where the fluid is a viscoelastic material. We establish the approximate controllability and the exponential stabilizability for the velocities of the fluid and of the rigid body and for the position of the rigid body. In order to prove this, we prove a general result for this kind of systems that generalizes in particular the case without structure. The exponential stabilization of the system is obtained with a finite-dimensional feedback control acting only on the momentum equation on a subset of the fluid domain and up to some rate that depends on the coefficients of the system. We also show that, as in the case without structure, the system is not exactly null-controllable in finite time.
- Published
- 2020
37. Boundary stabilization of a fluid-rigid body interaction system
- Author
-
Takéo Takahashi and Mehdi Badra
- Subjects
Physics ,0209 industrial biotechnology ,Change of variables ,020208 electrical & electronic engineering ,Boundary (topology) ,Newton's laws of motion ,02 engineering and technology ,Mechanics ,Rigid body ,Domain (mathematical analysis) ,Physics::Fluid Dynamics ,Nonlinear system ,020901 industrial engineering & automation ,Control and Systems Engineering ,Position (vector) ,0202 electrical engineering, electronic engineering, information engineering ,Compressibility - Abstract
Let us consider a fluid-rigid body interaction system. We are interested in the feedback stabilization of this system by using a finite-dimensional control localized on the interface between the structure and the fluid. The fluid is assumed to be viscous and incompressible and to follow the Navier-Stokes system and we consider for the rigid body the Newton laws. We follow a general method for the stabilization of nonlinear parabolic systems combined with a change of variables to handle the fact that the fluid domain is moving with time. We prove that for small initial velocities and if the initial position and the final position are close, we can stabilize the position and the velocity of the rigid body and the velocity of the fluid.
- Published
- 2019
- Full Text
- View/download PDF
38. Feedback stabilization of parabolic systems with input delay
- Author
-
Imene Aicha Djebour, Takéo Takahashi, Julie Valein, Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), The two first authors were partially supported by the ANR research project IFSMACS (ANR-15-CE40-0010). The third author was partially supported by the ANR research projects ISDEEC (ANR-16-CE40-0013) and ANR ODISSE (ANR-19-CE48-0004-01)., ANR-15-CE40-0010,IFSMACS,Interaction Fluide-Structure : Modélisation, analyse, contrôle et simulation(2015), ANR-16-CE40-0013,ISDEEC,Interactions entre Systèmes Dynamiques, Equations d'Evolution et Contrôle(2016), and ANR-19-CE48-0004,ODISSE,Synthèse d'observateur pour des systèmes de dimension infinie(2019)
- Subjects
0209 industrial biotechnology ,Work (thermodynamics) ,Control and Optimization ,Feedback control ,parabolic systems ,2010 Mathematics Subject Classification 93B52, 93D15, 35Q30, 76D05, 93C20 ,02 engineering and technology ,01 natural sciences ,Navier-Stokes system ,020901 industrial engineering & automation ,Mathematics - Analysis of PDEs ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,0101 mathematics ,Mathematics - Optimization and Control ,Mathematics ,delay control ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,stabilizability ,finite-dimensional control ,Nonlinear system ,Transformation (function) ,Optimization and Control (math.OC) ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Constant (mathematics) ,Stationary state ,Analysis of PDEs (math.AP) - Abstract
This work is devoted to the stabilization of parabolic systems with a finite-dimensional control subjected to a constant delay. Our main result shows that the Fattorini-Hautus criterion yields the existence of such a feedback control, as in the case of stabilization without delay. The proof consists in splitting the system into a finite dimensional unstable part and a stable infinite-dimensional part and to apply the Artstein transformation on the finite-dimensional system to remove the delay in the control. Using our abstract result, we can prove new results for the stabilization of parabolic systems with constant delay: the \begin{document}$ N $\end{document}-dimensional linear reaction-convection-diffusion equation with \begin{document}$ N\geq 1 $\end{document} and the Oseen system. We end the article by showing that this theory can be used to stabilize nonlinear parabolic systems with input delay by proving the local feedback distributed stabilization of the Navier-Stokes system around a stationary state.
- Published
- 2020
- Full Text
- View/download PDF
39. Local controllability to stationary trajectories of a Burgers equation with nonlocal viscosity
- Author
-
Sorin Micu and Takéo Takahashi
- Subjects
0209 industrial biotechnology ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,02 engineering and technology ,01 natural sciences ,Burgers' equation ,Controllability ,Nonlinear system ,Viscosity ,020901 industrial engineering & automation ,Fixed-point iteration ,Linearization ,Biorthogonal system ,0101 mathematics ,Fourier series ,Analysis ,Mathematics - Abstract
This article studies the local controllability to trajectories of a Burgers equation with nonlocal viscosity. By linearization we are led to an equation with a non local term whose controllability properties are analyzed by using Fourier decomposition and biorthogonal techniques. Once the existence of controls is proved and the dependence of their norms with respect to the time is established for the linearized model, a fixed point method allows us to deduce the result for the nonlinear initial problem.
- Published
- 2018
- Full Text
- View/download PDF
40. On the Existence of Strong Solutions to a Fluid Structure Interaction Problem with Navier Boundary Conditions
- Author
-
Takéo Takahashi, Imene Aicha Djebour, Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Small data ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Boundary (topology) ,Condensed Matter Physics ,01 natural sciences ,Navier-Stokes system ,Physics::Fluid Dynamics ,010101 applied mathematics ,Strong solutions ,Computational Mathematics ,damped beam equation ,Fluid–structure interaction ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Fluid motion ,strong solutions ,Uniqueness ,Boundary value problem ,0101 mathematics ,fluid-structure interaction systems ,Plate equation ,Mathematical Physics - Abstract
International audience; We consider a fluid-structure interaction system composed by a three-dimensional viscous incompressible fluid and an elastic plate located on the upper part of the fluid boundary. The fluid motion is governed by the Navier-Stokes system whereas we add a damping in the plate equation. We use here Navier-slip boundary conditions instead of the standard no-slip boundary conditions. The main results are the local in time existence and uniqueness of strong solutions of the corresponding system and the global in time existence and uniqueness of strong solutions for small data and if we assume the presence of frictions in the boundary conditions.
- Published
- 2019
- Full Text
- View/download PDF
41. Analysis of a system modelling the motion of a piston in a viscous gas
- Author
-
Marius Tucsnak, Debayan Maity, Takéo Takahashi, Center for Applicable Mathematics [Bangalore] (TIFR-CAM), Tata Institute for Fundamental Research (TIFR), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), and Tata Institute of Fundamental Research [Bombay] (TIFR)
- Subjects
Physics ,fluid-particle interaction ,Compressible Navier-Stokes System ,Applied Mathematics ,010102 general mathematics ,Motion (geometry) ,Context (language use) ,Mechanics ,Condensed Matter Physics ,01 natural sciences ,Cylinder (engine) ,law.invention ,010101 applied mathematics ,Computational Mathematics ,Piston ,law ,Free boundary problem ,Compressibility ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Boundary value problem ,Uniqueness ,0101 mathematics ,Mathematical Physics - Abstract
International audience; We study a free boundary problem modelling the motion of a piston in a viscous gas. The gas-piston system fills a cylinder with fixed extremities, which possibly allow gas from the exterior to penetrate inside the cylinder. The gas is modeled by the 1D compressible Navier-Stokes system and the piston motion is described by the second Newton's law. We prove the existence and uniqueness of global in time strong solutions. The main novelty brought in by our results is that they include the case on nonhomogeneous boundary conditions which, as far as we know, have not been studied in this context. Moreover, even for homogeneous boundary conditions, our results require less regularity of the initial data than those obtained in previous works.
- Published
- 2016
- Full Text
- View/download PDF
42. An optimal control approach to ciliary locomotion
- Author
-
Marius Tucsnak, Jorge San Martín, Takéo Takahashi, Departamento de Ingeniería Matemática, Facultad de Ciencias Fisicas y Matemáticas, Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Robust control of infinite dimensional systems and applications (CORIDA), and ANR-11-BS03-0002,HAMECMOPSYS,Approche Hamiltonienne pour l'analyse et la commande des systèmes multiphysiques à paramètres distribués(2011)
- Subjects
0209 industrial biotechnology ,Control and Optimization ,media_common.quotation_subject ,Boundary (topology) ,02 engineering and technology ,controllability ,01 natural sciences ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,optimal control ,symbols.namesake ,020901 industrial engineering & automation ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,Sensitivity (control systems) ,0101 mathematics ,Eccentricity (behavior) ,Astrophysics::Galaxy Astrophysics ,Mathematics ,media_common ,Applied Mathematics ,Mathematical analysis ,Ode ,Scalar (physics) ,Stokes equations ,Reynolds number ,Optimal control ,010101 applied mathematics ,Controllability ,Gegenbauer functions ,symbols ,ciliates ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] - Abstract
We consider a class of low Reynolds number swimmers, of prolate spheroidal shape, which can be seen as simplified models of ciliated microorganisms. Within this model, the form of the swimmer does not change, the propelling mechanism consisting in tangential displacements of the material points of swimmer's boundary. Using explicit formulas for the solution of the Stokes equations at the exterior of a translating prolate spheroid the governing equations reduce to a system of ODE's with the control acting in some of its coefficients (bilinear control system). The main theoretical result asserts the exact controllability of the prolate spheroidal swimmer. In the same geometrical situation, we consider the optimal control problem of maximizing the efficiency during a stroke and we prove the existence of a maximum. We also provide a method to compute an approximation of the efficiency by using explicit formulas for the Stokes system at the exterior of a prolate spheroid, with some particular tangential velocities at the fluid-solid interface. We analyze the sensitivity of this efficiency with respect to the eccentricity of the considered spheroid and show that for small positive eccentricity, the efficiency of a prolate spheroid is better than the efficiency of a sphere. Finally, we use numerical optimization tools to investigate the dependence of the efficiency on the number of inputs and on the eccentricity of the spheroid. The ``best'' numerical result obtained yields an efficiency of $30.66\%$ with $13$ scalar inputs. In the limiting case of a sphere our best numerically obtained efficiency is of $30.4\%$, whereas the best computed efficiency previously reported in the literature is of $22\%$.
- Published
- 2016
- Full Text
- View/download PDF
43. Local null controllability of a rigid body moving into a Boussinesq flow
- Author
-
Takéo Takahashi, Arnab Roy, Center for Applicable Mathematics [Bangalore] (TIFR-CAM), Tata Institute of Fundamental Research [Bombay] (TIFR), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ANR-15-CE40-0010,IFSMACS,Interaction Fluide-Structure : Modélisation, analyse, contrôle et simulation(2015), and Tata Institute for Fundamental Research (TIFR)
- Subjects
Controllability ,0209 industrial biotechnology ,Control and Optimization ,Carleman inequality ,Newton's laws of motion ,02 engineering and technology ,system ,01 natural sciences ,Physics::Fluid Dynamics ,Rigid body ,020901 industrial engineering & automation ,Position (vector) ,Fluid–structure interaction ,Fluid-structure interaction ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Boussinesq ,0101 mathematics ,Navier–Stokes equations ,Physics ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Null (mathematics) ,Flow (mathematics) ,AMS subject classifications 35Q30, 93C20, 76D05, 93B05 ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Navier-Stokes equations - Abstract
International audience; In this paper, we study the controllability of a fluid-structure interaction system. We consider a viscous and incompressible fluid modeled by the Boussinesq system and the structure is a rigid body with arbitrary shape which satisfies Newton's laws of motion. We assume that the motion of this system is bidimensional in space. We prove the local null controllability for the velocity and temperature of the fluid and for the position and velocity of rigid body for a control acting only on the temperature equation on a fixed subset of the fluid domain.
- Published
- 2019
- Full Text
- View/download PDF
44. Mathematical analysis of the motion of a rigid body in a compressible Navier-Stokes-Fourier fluid
- Author
-
Debayan Maity, Marius Tucsnak, Takéo Takahashi, Bernhard H. Haak, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), ANR-15-CE40-0010,IFSMACS,Interaction Fluide-Structure : Modélisation, analyse, contrôle et simulation(2015), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
General Mathematics ,Motion (geometry) ,R-sectorial operators ,76N10 ,strong ,01 natural sciences ,AMS subject classifications 35Q30 ,symbols.namesake ,Mathematics - Analysis of PDEs ,Thermal insulation ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Boundary value problem ,0101 mathematics ,solutions ,Mathematics ,fluid-particle interaction ,Small data ,business.industry ,010102 general mathematics ,Mathematical analysis ,Linear system ,maximal regularity ,Rigid body ,76D05 ,010101 applied mathematics ,Fourier transform ,Compressible Navier-Stokes-Fourier System ,symbols ,Compressibility ,business ,Analysis of PDEs (math.AP) - Abstract
International audience; We study an initial and boundary value problem modelling the motion of a rigid body in a heat conducting gas. The solid is supposed to be a perfect thermal insulator. The gas is described by the compressible Navier-Stokes-Fourier equations, whereas the motion of the solid is governed by Newton's laws. The main results assert the existence of strong solutions, in an L p-L q setting, both locally in time and globally in time for small data. The proof is essentially using the maximal regularity property of associated linear systems. This property is checked by proving the R-sectoriality of the corresponding operators, which in turn is obtained by a perturbation method.
- Published
- 2019
- Full Text
- View/download PDF
45. Gevrey regularity for a system coupling the Navier-Stokes system with a beam equation
- Author
-
Takéo Takahashi, Mehdi Badra, Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Coupling ,Gevrey class semigroups ,Semigroup ,Applied Mathematics ,010102 general mathematics ,Mathematical analysis ,Boundary (topology) ,Fixed point ,01 natural sciences ,Domain (mathematical analysis) ,fluid-structure ,010101 applied mathematics ,Physics::Fluid Dynamics ,Navier-Stokes system ,Computational Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Uniqueness ,0101 mathematics ,Gevrey class ,2010 Mathematics Subject Classification : 76D03, 76D05, 35Q74, 76D27 ,Analysis ,Beam (structure) ,Mathematics - Abstract
International audience; We analyse a bi-dimensional fluid-structure interaction system composed by a viscous incompressible fluid and a beam located at the boundary of the fluid domain. Our main result is the existence and uniqueness of strong solutions for the corresponding coupled system. The proof is based on a the study of the linearized system and a fixed point procedure. In particular, we show that the linearized system can be written with a Gevrey class semigroup. The main novelty with respect to previous results is that we do not consider any approximation in the beam equation.
- Published
- 2019
- Full Text
- View/download PDF
46. Analysis of a simplified model of rigid structure floating in a viscous fluid
- Author
-
Takéo Takahashi, Jorge San Martín, Marius Tucsnak, Debayan Maity, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Centre de modélisation mathématique (CMM), Universitad de Chile-Centre National de la Recherche Scientifique (CNRS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), ANR-16-CE92-0028,INFIDHEM,Systèmes interconnectés de dimension infinie pour les milieux hétérogènes(2016), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Function space ,Differential equation ,Applied Mathematics ,Mathematical analysis ,return to equilibrium ,General Engineering ,Viscous shallow water equations ,fluid-structure interaction ,floating structure ,Viscous liquid ,01 natural sciences ,010305 fluids & plasmas ,010101 applied mathematics ,Viscosity ,AMS subject classifications 35Q35 74F10 ,Flow (mathematics) ,Linearization ,Modeling and Simulation ,0103 physical sciences ,Fluid–structure interaction ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,strong solutions ,0101 mathematics ,Shallow water equations ,Mathematics - Abstract
International audience; We study the interaction of surface water waves with a floating solid constraint to move only in the vertical direction. The first novelty we bring in is that we propose a new model for this interaction, taking into consideration the viscosity of the fluid. This is done supposing that the flow obeys a shallow water regime (modeled by the viscous Saint-Venant equations in one space dimension) and using a Hamiltonian formalism. Another contribution of this work is establishing the well-posedness of the obtained PDEs/ODEs system in function spaces similar to the standard ones for strong solutions of viscous shallow water equations. Our well-posedness results are local in time for every initial data and global in time if the initial data are close (in appropriate norms) to an equilibrium state. Moreover, we show that the linearization of our system around an equilibrium state can be described, at least for some initial data, by an integro-fractional differential equation related to the classical Cummins equation and which reduces to the Cummins equation when the viscosity vanishes and the fluid is supposed to fill the whole space. Finally, we describe some numerical tests, performed on the original nonlinear system, which illustrate the return to equilibrium and the influence of the viscosity coefficient.
- Published
- 2019
- Full Text
- View/download PDF
47. Asymptotic analysis of an optimal control problem for a viscous incompressible fluid with Navier slip boundary conditions
- Author
-
Takéo Takahashi, Claudia Gariboldi, National University of Río Cuarto = Universidad Nacional de Río Cuarto (UNRC), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
0209 industrial biotechnology ,Asymptotic analysis ,General Mathematics ,Mathematics::Analysis of PDEs ,02 engineering and technology ,Slip (materials science) ,01 natural sciences ,Navier-Stokes system ,Physics::Fluid Dynamics ,symbols.namesake ,optimal control ,020901 industrial engineering & automation ,Mathematics - Analysis of PDEs ,Convergence (routing) ,FOS: Mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Boundary value problem ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,0101 mathematics ,Mathematics ,Sequence ,010102 general mathematics ,Mathematical analysis ,Viscous incompressible fluid ,Optimal control ,Dirichlet boundary condition ,symbols ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Navier slip boundary condition ,Analysis of PDEs (math.AP) - Abstract
International audience; We consider an optimal control problem for the Navier–Stokes system with Navier slip boundary conditions. We denote by $\alpha$ the friction coefficient and we analyze the asymptotic behavior of such a problem as $\alpha\to\infty$. More precisely, we prove that if we take an optimal control for each $\alpha$, then there exists a sequence of optimal controls converging to an optimal control of the same optimal control problem for the Navier–Stokes system with the Dirichlet boundary condition. We also show the convergence of the corresponding direct and adjoint states.
- Published
- 2019
- Full Text
- View/download PDF
48. Existence of weak solutions for a Bingham fluid-rigid body system
- Author
-
Benjamin Obando, Takéo Takahashi, Departamento de Ingeniería Matemática [Santiago] (DIM), Universidad de Chile = University of Chile [Santiago] (UCHILE)-Centre National de la Recherche Scientifique (CNRS), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), and Centre National de la Recherche Scientifique (CNRS)-Universidad de Chile = University of Chile [Santiago] (UCHILE)
- Subjects
Physics ,Viscoplasticity ,Applied Mathematics ,Weak solution ,010102 general mathematics ,Mathematical analysis ,Newton's laws of motion ,Weak formulation ,Rigid body ,01 natural sciences ,Displacement (vector) ,010101 applied mathematics ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Penalty method ,0101 mathematics ,Bingham plastic ,Mathematical Physics ,Analysis - Abstract
International audience; We consider the motion of a rigid body in a viscoplastic material. This material is modeled by the 3D Bingham equations, and the Newton laws govern the displacement of the rigid body. Our main result is the existence of a weak solution for the corresponding system. The weak formulation is an inequality (due to the plasticity of the fluid), and it involves a free boundary (due to the motion of the rigid body). We approximate it by regularizing the convex terms in the Bingham fluid and by using a penalty method to take into account the presence of the rigid body.
- Published
- 2019
- Full Text
- View/download PDF
49. Stabilization of a fluid–rigid body system
- Author
-
Takéo Takahashi, George Weiss, Marius Tucsnak, Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Tel Aviv University [Tel Aviv]
- Subjects
asymptotic stability ,Applied Mathematics ,Mathematical analysis ,PD controller ,switching feedback ,Fixed point ,Rigid body ,Damper ,Exponential stability ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Initial value problem ,global solutions ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Uniqueness ,Ball (mathematics) ,Navier-Stokes equations ,fluid-structure interactions ,Navier–Stokes equations ,Analysis ,Mathematics - Abstract
We consider the mathematical model of a rigid ball moving in a viscous incompressible fluid occupying a bounded domain Ω, with an external force acting on the ball. We investigate in particular the case when the external force is what would be produced by a spring and a damper connecting the center of the ball h to a fixed point h 1 ∈ Ω . If the initial fluid velocity is sufficiently small, and the initial h is sufficiently close to h 1 , then we prove the existence and uniqueness of global (in time) solutions for the model. Moreover, in this case, we show that h converges to h 1 , and all the velocities (of the fluid and of the ball) converge to zero. Based on this result, we derive a control law that will bring the ball asymptotically to the desired position h 1 even if the initial value of h is far from h 1 , and the path leading to h 1 is winding and complicated. Now, the idea is to use the force as described above, with one end of the spring and damper at h , while other end is jumping between a finite number of points in Ω, that depend on h (a switching feedback law).
- Published
- 2015
- Full Text
- View/download PDF
50. Elastic energy of a convex body
- Author
-
Antoine Henrot, Chiara Bianchini, and Takéo Takahashi
- Subjects
010101 applied mathematics ,General Mathematics ,010102 general mathematics ,Mathematical analysis ,Elastic energy ,Convex body ,0101 mathematics ,01 natural sciences ,Mathematics - Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.