Riccardo Adami, Valentina Franceschi, Dario Prandi, Ugo Boscain, Politecnico di Torino = Polytechnic of Turin (Polito), Centre National de la Recherche Scientifique (CNRS), Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Control And GEometry (CaGE ), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Dipartimento di Matematica 'Tullio Levi-Civita', Universita degli Studi di Padova, Université Paris-Saclay, Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), The authors acknowledge that the present research is partially supported by: MIUR Grant Dipartimenti di Eccellenza (2018-2022) E11G18000350001, ANR-15-CE40-0018 projectSRGI - Sub-Riemannian Geometry and Interactions, ANR-17-CE40-0007 pojectQUACO - Contrôle quantique: systèmes d’EDPs et applications à l’IRM, G.N.A.M.P.A. projectProblemi isoperi-metrici in spazi Euclidei e non. The third author acknowledges the support received from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant No 794592., ANR-15-CE40-0018,SRGI,Géométrie sous-Riemannienne et Interactions(2015), Politecnico di Torino [Torino] (Polito), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Sud - Paris 11 (UP11), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and Università degli Studi di Padova = University of Padua (Unipd)
In this paper we show that, for a sub-Laplacian Δ on a 3-dimensional manifold M, no point interaction centered at a point q 0 ∈ M exists. When M is complete w.r.t. the associated sub-Riemannian structure, this means that Δ acting on C 0 ∞ ( M ∖ { q 0 } ) is essentially self-adjoint in L 2 ( M ) . A particular example is the standard sub-Laplacian on the Heisenberg group. This is in stark contrast with what happens in a Riemannian manifold N, whose associated Laplace-Beltrami operator acting on C 0 ∞ ( N ∖ { q 0 } ) is never essentially self-adjoint in L 2 ( N ) , if dim N ≤ 3 . We then apply this result to the Schrodinger evolution of a thin molecule, i.e., with a vanishing moment of inertia, rotating around its center of mass.