1. Wafer-scale fabrication of biologically sensitive Si nanowire FET: from pH sensing to electrical detection of DNA hybridization
- Author
-
G. Nonglaton, Bernard Previtali, V. Stambouli, R. Midahuen, Sylvain Barraud, C. Fontelaye, Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des matériaux et du génie physique (LMGP ), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)-Université Grenoble Alpes (UGA)
- Subjects
Capacitive coupling ,Fabrication ,Materials science ,Silicon ,business.industry ,Nanowire ,chemistry.chemical_element ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Threshold voltage ,CMOS ,chemistry ,Optoelectronics ,Wafer ,Field-effect transistor ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
In this work, a wafer-scale fabrication of biologically sensitive Si nanowire FET is demonstrated for pH sensing and electrical detection of DNA hybridization. Based on conventional “top-down” CMOS compatible technology, our bioFETs explore a wide range of design (nanowires [NW], nanoribbons [NR], and honeycomb [HC] structures) with opening access scaled down to only 120 nm. After device fabrication, I DS -V BG transfer and I DS -V DS output characteristics show a conventional n-type FET behavior with an I ON /I OFF value higher than 105, as well as an increase of threshold voltage as the NW width is reduced. Then, using a capacitive coupling in our dual-gated Si bioFETs, the pH sensitivity is enhanced with a pH response up to 600 mV/pH. Finally, the increase of threshold voltage of n-type SiNWs due to hybridized target DNA molecules is successfully detected.
- Published
- 2021