1. Ca2+-dependent phosphodiesterase 1 regulates the plasticity of striatal spiny projection neuron glutamatergic synapses
- Author
-
Shenyu Zhai, Shintaro Otsuka, Jian Xu, Vernon R.J. Clarke, Tatiana Tkatch, David Wokosin, Zhong Xie, Asami Tanimura, Hitesh K. Agarwal, Graham C.R. Ellis-Davies, Anis Contractor, and D. James Surmeier
- Subjects
CP: Neuroscience ,Biology (General) ,QH301-705.5 - Abstract
Summary: Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca2+ entry through CaV1.3 Ca2+ channels and phosphodiesterase 1 (PDE1) activation, which blunts intracellular cyclic guanosine monophosphate (cGMP) and NO signaling. Both experimental and simulation studies suggest that this Ca2+-dependent regulation of PDE1 activity allows for local regulation of dendritic cGMP signaling. In a mouse model of Parkinson disease (PD), NO-LTD is absent because of impaired interneuronal NO release; re-balancing intrastriatal neuromodulatory signaling restores NO release and NO-LTD. Taken together, these studies provide important insights into the mechanisms governing NO-LTD in SPNs and its role in psychomotor disorders such as PD.
- Published
- 2024
- Full Text
- View/download PDF